

DEPARTMENT OF WATER AFFAIRS

Surface water quality of South Africa. The Vaal River catchment: 1979 to 1983

H R van Vliet

U Nell

DEPARTMENT OF WATER AFFAIRS

HYDROLOGICAL RESEARCH INSTITUTE

TECHNICAL REPORT TR 131

SURFACE WATER QUALITY OF SOUTH AFRICA.


THE VAAL RIVER CATCHMENT: 1979 to 1983

by

H.R. van Vliet and U. Nell

December 1986

Department of Water Affairs
Private Bag X313
Pretoria
0001

CONTENTS

	Page
EXECUTIVE SUMMARY	
ACKNOWLEDGEMENTS(
1. INTRODUCTION	1
2. THE VAAL RIVER CATCHMENT	4
3. MONITORING NETWORK AND DATA CONSIDERATIONS OF THE VAAL RIVER CATCHMENT	8
4. PRESENTATION OF DATA	10
5. OVERVIEW OF THE WATER QUALITY	12
Appendix A: SUMMARIZED WATER QUALITY DATA FOR THE VAAL RIVER CATCHMENT	23
Appendix B: BIBLIOGRAPHY OF MAJOR LITERATURE PERTAINING TO THE VAAL RIVER CATCHMENT	187
Appendix C: STATIONS IN THE VAAL RIVER CATCHMENT	191
Appendix D: EXAMPLES OF STANDARD OUTPUT FORMATS AVAILABLE FROM THE WATER QUALITY DATABASE	199

EXECUTIVE SUMMARY

The rivers, streams and impoundments in the Vaal River catchment are subjected to enormous pressures from industrial, agricultural, mining and urban activities, as well as a steadily growing population. With this growth and increasing use, water quality information, ranging from the major ion chemistry to nutrients, trace metals and organic contamination has emerged as a fundamental requirement for the development and management of the catchment's water resources.

This report is one in a series of similar summary reports being prepared as part of a project on the presentation of water quality data on a catchment basis. As such, the report should be treated as a pilot study and comments on the format and approach used for data presentation will be welcomed by the authors.

Data assembled from the Department of Water Affairs' water quality monitoring programme In the Vaal River catchment for the period 1979 to 1983 are presented in the form of statistical summaries for selected sampling stations. The purpose of the report is to provide an overview of the major ion chemical quality of the catchment. A synthesis of the data is also synoptically presented in the form of a water quality map. Some interpretation of data is Included in the report, which is primarily designed to provide an overall catchment perspective. In addition, potential users can be made aware of the type and the format in which data is available.

Most of the rivers of the Upper Vaal catchment are generally of a good mineral quality and the upper catchments are characterized by relatively low total dissolved solids (TDS), alkaline earth-bicarbonate type waters. Two tributaries, the Waterval River and the Molspruit, draining from the north are notable exceptions. Relatively high TDS concentrations, primarily due to increased contributions from sulphate, chloride and sodium occur in these tributaries. The impact however, of these sources of TDS on the mineral quality of the Vaal Dam is to a large extent ameliorated by the inflow of low TDS waters from the Wilge River catchment.

In the Middle Vaal region, the Vaal River and tributaries draining the southern Witwatersrand and West Rand areas are dominated by high TDS point and non-point sources, and mineral water quality conditions are the worst of the entire Vaal River catchment. These high TDS concentrations are caused in large part by the urban, mining and industrial activities in the areas north of the Vaal River which contribute varying loads of mineral salts to the water courses. Further downstream, the impact of these TDS sources is to some extent ameliorated by the inflow of lower TDS, alkaline earth-bicarbonate type waters from the east.

Water quality conditions in the Lower Vaal River are dominated primarily by agricultural activities which are the major cause of the increased sodium and chloride concentrations in the lower reach. Significant sources of high TDS, chloride and sodium contribution to the Vaal River are the inflows of the Harts River from the north which Is dominated by irrigation return flow from the Vaalharts Irrigation Scheme, the Riet River from the east and the Douglas Irrigation Scheme.

The report underlines the dramatic regional differences which exist in the catchment with respect to the mineral content of the waters and certain quality constituents such as sulphate, sodium and chloride.

van Vliet, H. R., & Nell, U. (1986). *Surface water quality of South Africa: the Vaal River catchment 1979 to 1983* (No. TR131) (pp. 1–208). Pretoria: Hydrological Research Institute, Department of Water Affairs and Forestry.

EXECUTIVE SUMMARY

The rivers, streams and impoundments in the Vaal River catchment are subjected to enormous pressures from industrial, agricultural, mining and urban activities, as well as a steadily growing population. With this growth and increasing use, water quality information, ranging from the major ion chemistry to nutrients, trace metals and organic contamination has emerged as a fundamental requirement for the development and management of the catchment's water resources.

This report is one in a series of similar summary reports being prepared as part of a project on the presentation of water quality data on a catchment basis. As such, the report should be treated as a pilot study and comments on the format and approach used for data presentation will be welcomed by the authors.

Data assembled from the Department of Water Affairs' water quality monitoring program in the Vaal River catchment for the period 1979 to 1983 are presented in the form of statistical summaries for selected sampling stations. The purpose of the report is to provide an overview of the major ion chemical quality of the catchment. A synthesis of the data is also synoptically presented in the form of a water quality map. Some interpretation of data is included in the report, which is primarily designed to provide an overall catchment perspective. In addition, potential users can be made aware of the type and the format in which data is available.

Most of the rivers of the Upper Vaal catchment are generally of a good mineral quality and the upper catchments are characterized by relatively low total dissolved solids (TDS), alkaline earth-bicarbonate type waters. Two tributaries, the Waterval River and the Molspruit, draining from the north are notable exceptions. Relatively high TDS concentrations,

primarily due to increased contributions from sulphate, chloride and sodium occur in these tributaries. The impact however, of these sources of TDS on the mineral quality of the Vaal Dam is to a large extent ameliorated by the inflow of low TDS waters from the Wilge River catchment.

In the Middle Vaal region, the Vaal River and tributaries draining the southern Witwatersrand and West Rand areas are dominated by high TDS point and non-point sources, and mineral water quality conditions are the worst of the entire Vaal River catchment. These high TDS concentrations are caused in large part by the urban, mining and industrial activities in the areas north of the Vaal River which contribute varying loads of mineral salts to the water courses. Further downstream, the impact of these TDS sources is to some extent ameliorated by the inflow of lower TDS, alkaline earth-bicarbonate type waters from the east.

Water quality conditions in the Lower Vaal River are dominated primarily by agricultural activities which are the major cause of the increased sodium and chloride concentrations in the lower reach. Significant sources of high TDS, chloride and sodium contribution to the Vaal River are the inflows of the Harts River from the north which is dominated by irrigation return flow from the Vaalharts Irrigation Scheme, the Riet River from the east and the Douglas Irrigation Scheme.

The report underlines the dramatic regional differences which exist in the catchment with respect to the mineral content of the waters and certain quality constituents such as sulphate, sodium and chloride.

ACKNOWLEDGEMENTS

Many individuals have made substantial contributions to the development of the Department of Water Affairs' water quality monitoring program and their efforts are gratefully acknowledged.

The authors are also indebted to the following individuals:

Mrs. A. Hanekom for the excellent preparation of the water quality map,

Messrs. E. Braune, C.A. Bruwer and J.M. Schutte for valuable discussions and comments during the project,

Mrs. A. Kolbe who drew the figures included in the text,

Dr. P. Adamson for the useful discussions during the initial stages of the project as well as providing programs for the calculation of the mixed log-normal distributions,

Mr. I.J. Schoonraad for the development of various data processing programs.

Messrs. D. P. Sartory and P.L. Kempster for many hours of technical discussions and editorial comments, and

Mrs. C Edwards for typing the manuscript.

INTRODUCTION

The Department of Water Affairs, through its Directorate of Hydrology and the Hydrological Research Institute monitors the quality of South Africa's surface water resources. The objectives of the national monitoring program are essentially to provide:

- ambient water quality data, and
- interpretive information for water resources planning, management and pollution control.

These objectives are very generalized and apply on an interim basis until sufficient data is available to establish specific objectives.

The Department's monitoring program has been underway since the late 1960's and at present encompasses most of the country's major surface waters. During the past decade an increase in the Institute's analytical laboratory capacity has led to an intensification of the monitoring program which has grown in size to include approximately 1000 sampling stations.

The water quality monitoring program includes a wide range of chemical constituents. Analyses are routinely carried out for determinands such as the major ions (calcium, magnesium, sodium, potassium. sulphate, chloride and alkalinity) and conductivity and fluoride. Nutrients such as inorganic phosphorus, nitrate and ammonium are also measured routinely. In addition total phosphorus, organic nitrogen and trace metals are monitored at a number of selected sites. frequencies generally vary from weekly for river stations to monthly for impoundments.

A large amount of data on the major ion chemistry of surface waters in South Africa has been collected and stored in the Department's Water Quality Database located at Pretoria. For some time there has been the need for the presentation of this data. In addition, sufficient data now exists for many areas, enabling the presentation of statistically meaningful information of water quality on a catchment basis.

This document, presenting the data on the Vaal River catchment, is the first in a series of Summary Reports designed to fill the need for the presentation of water quality information. These reports contain little interpretation of data and are primarily designed to make water quality data available to users and interested groups. As such, it does not consider, in depth, local water quality but rather presents an overall catchment perspective. In addition potential users will be made aware of the type and the format in which data can be provided. Examples of the standard output formats available are given in Appendix D.

The specific purpose of this report is therefore to present an overview of the water quality data of the Vaal River catchment, obtainable from the Department's water quality monitoring program. To accomplish this a large volume of data has been statistically summarized and is presented in Appendix A at the end of this report. A synthesis of the data is visually depicted in the water quality map accompanying this document.

The text provides a general overview of the catchment water quality and highlights certain aspects. The focus is primarily on the inorganic chemical quality as reflected by the data on the National Water Quality Database and reference is only made to other quality aspects where these may be relevant. Ground water quality is not addressed in this report.

This then is the first report in a series for which data will be presented on a drainage region basis (Figure 1). The areas covered will either be complete drainage basins, or groups of basins as in some coastal regions. The Vaal River catchment is treated separately from the rest of the Orange River basin. The information presented in these reports will be updated and expanded in the future.

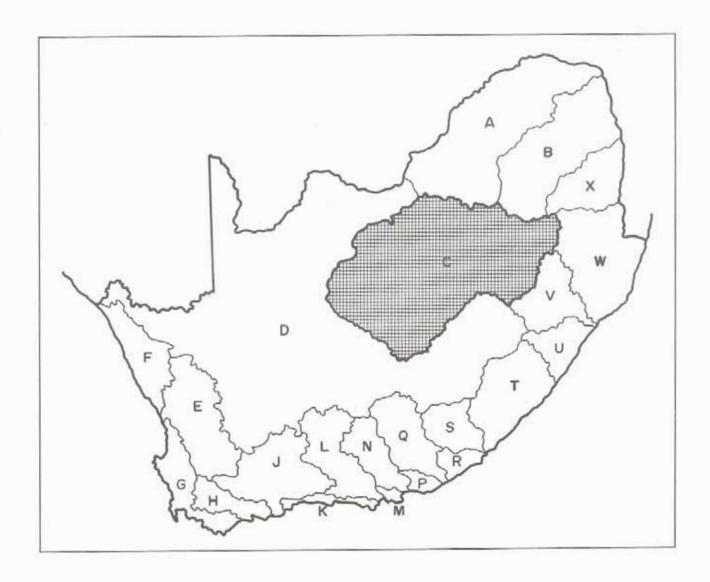


Figure 1: Drainage regions of South Africa.

THE VAAL RIVER CATCHMENT

The catchment being addressed in this report is only briefly described here. More detailed reports on various aspects concerning the catchment are listed in the Bibliography presented as Appendix B.

The Vaal River is arguably one of the most important rivers in South Africa, being the principal water source for the industrial heartland of the country. The catchment which covers most of the Orange Free State, the southern section of Transvaal and the eastern portion of the northern Cape is approximately 194 000 km² in area. The river and its tributaries contain several impoundments and the catchment is divided into three sections based upon the two principal impoundments on the Vaal River - Vaal Dam and Bloemhof Dam. The source river and its tributaries as far as Vaal Barrage below Vaal Dam is the Upper Vaal (Figure 2), from the Barrage to Bloemhof Dam is the Middle Vaal (Figure 3) and from Bloemhof Dam to the confluence with the Orange River at Douglas is the Lower Vaal (Figure 4).

The Upper and Middle Vaal are situated mainly in the Highveld which is predominantly flat and is characterized hydrologically by long run-off times (Bruwer, van Vliet, Sartory and Kempster, 1985) and geologically by the Transvaal System which consists mainly of shale, quartzite and dolomite (van Eeden, 1972). The Lower Vaal and the southern section of Middle Vaal are situated in the Upper Karoo which is characterized by shale and andesitic lavas (van Eeden, 1972). Runoff from the Lower Vaal is considerably less than that of the Upper Vaal, principally as it receives less than half the rainfall compared to the eastern regions (Bruwer et al, 1985).

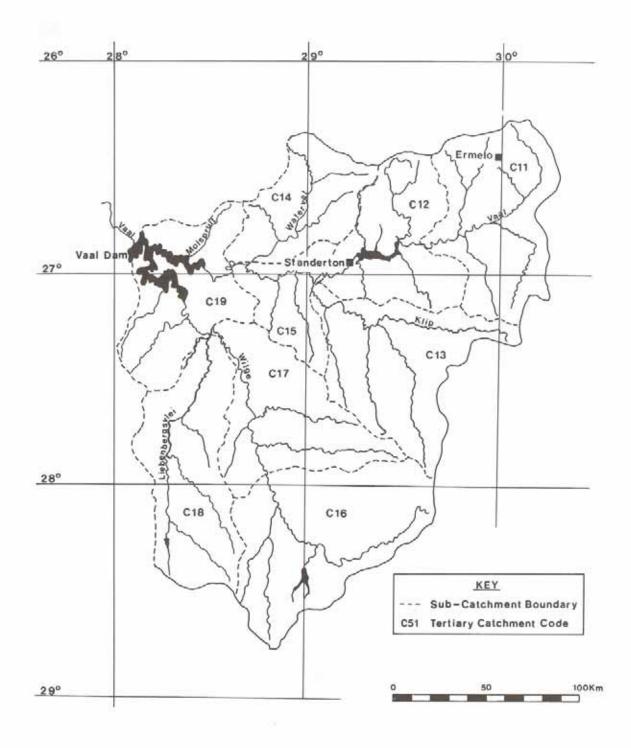


Figure 2: The Upper Vaal River Catchment.

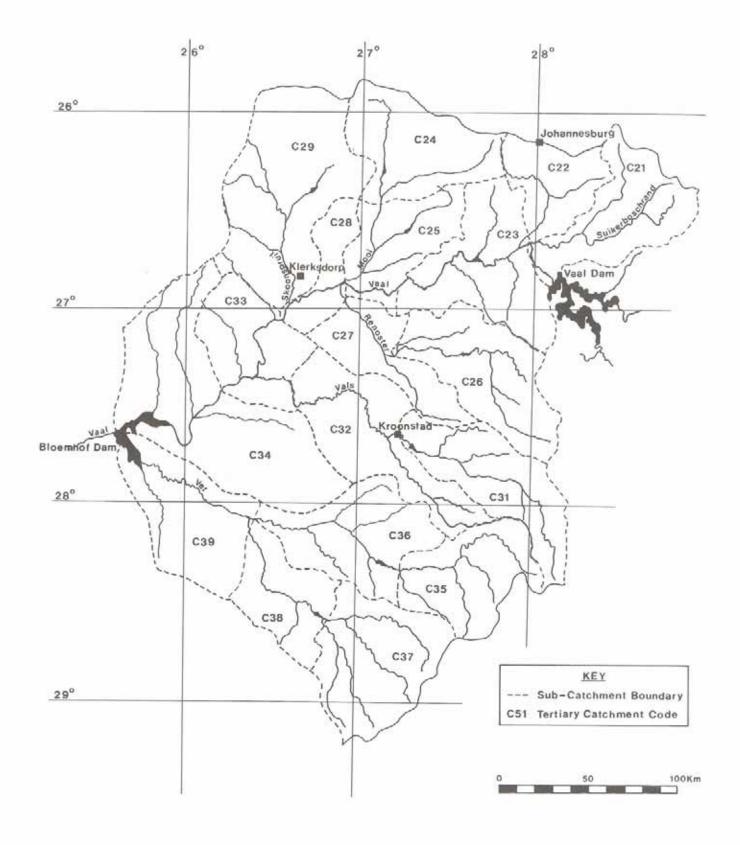


Figure 3: The Middle Vaal River Catchment.



Figure 4: The Lower Vaal River Catchment.

The catchment contains some of the most important agricultural and industrial areas in South Africa. The Middle Vaal catchment is a major source of maize and winter wheat production, while the Vaalharts Irrigation Scheme situated between the Vaal and Harts Rivers in the Lower Vaal is the largest scheme of its type in Southern Africa. Other areas of agricultural importance are the Riet and Modder River areas and the Douglas Irrigation area.

The industrial development of the catchment is dominated by the mining industry situated principally in the Witwatersrand in the northern section of the Middle Vaal. Gold and uranium are extensively mined and, because of the historical development of the country, many other major industries are also situated in this area. Gold and uranium mining also occurs in the mid-western section of the Middle Vaal. Several gold and coal mines as well as a number of coal related industries are located in the northern section of the Upper Vaal Catchment. The Lower Vaal catchment and the southern sections of the Upper and Middle Vaal catchment contain relatively little industrialization, being principally agricultural areas.

3. MONITORING NETWORK AND DATA CONSIDERATIONS OF THE VAAL RIVER CATCHMENT

The Department actively monitors some 130 flow gauging, dam and/or quality monitoring stations in the Vaal River catchment of which 81 have been selected for synthesis of data for this publication. A complete list of stations in the Vaal drainage region is given in Appendix C. In addition, the Rand Water Board (RWB) routinely monitors several stations in the Vaal Dam and Barrage area, including the tributaries of the Vaal River. The data collected by the RWB is presented in the Annual Reports of the Board.

The 81 stations for which data is presented in this report were selected on the basis of sufficient data in the period 1979 to 1983 to permit meaningful pictorial and statistical representation of the water quality with as small as possible bias to either the dry or wet seasons.

Additionally the stations selected are reasonably representative of the water quality conditions of the whole catchment. Many tributaries feeding into the Vaal River are either intermittent or have frequent periods of minimal flow. As a result sampling on these tributaries was irregular and these stations are not included in the report.

At many sites the amount of major ion chemical data is limited but is supported by a larger number of determinations of electrical conductivity (EC). In these cases use was made of the additional EC data by generating calculated total dissolved solids (TDS) concentrations through least square linear regression on EC and measured TDS data. For many stations therefore calculated TDS data exceeds the amount of data available for individual determinands. The determinands for which data are presented in Appendix A are listed in Table 1.

TABLE 1: CHEMICAL DETERMINANDS FOR WHICH DATA ARE PRESENTED

Cation	Reported as	Anion	Reported as
Sodium	Na	Sulphate	so ₄
Potassium	K	Chloride	c1
Calcium	Ca	Fluoride	F
Magnesium	Mg	Nitrate + Nitrite	N
pH	рН	Ortho-phosphate	P
Conductivity	EC	Silica	Si
Total Dissolved Solids	TDS	Alkalinity (TAL)	нс03

PRESENTATION OF DATA

The data for the stations selected for this report are presented in four forms

- Statistical summaries for each station
- Time series plots of TDS and EC
- Non exceedence probability plots for calculated TDS
- A water quality map of the catchment.

4.1 Statistical summaries

The statistical summaries (Appendix A) present information on the sampling frequency and distributions in summer (Oct. to March) and winter (April to Sept.) periods, and the maximum, minimum, median and standard deviation of the major ion concentrations for the 5 year period 1979 to 1983. In addition the 25th and 90th percentile values of the data for each determinand are also given.

4.2 Time series plots of TDS and EC

Time series plots of the monthly mean TDS and EC are given for as long a period, but starting not before 1975, as the data allows. Where gaps in the data exist points are connected with a dotted line.

4.3 Non-exceedence probability plots for TDS

The non-exceedence probability plots for TDS were produced using calculated TDS data from the derived TDS and EC relationships (as described under Section 3) for the period 1979 to 1983.

The plots were produced using the mixed log-normal distribution model of Adamson and Dixon (1983) $^{1)}$. The model is defined by the following functions:

$$F(x) = \alpha F_1(x) + (1 - \alpha) F_2(x)$$

where α is the proportionality factor for the two log-normal functions for each population $F_1(x)$ and $F_2(x)$ and x is the log transformed TDS data.

Details of the procedure and on how to derive the functions $F_1(x)$ and $F_2(x)$ can be found in Adamson and Dixon (1983). The calculated parameters needed to describe the mixed log-normal distribution for each station are given in tables in Appendix A.

4.4 Water quality map

The water quality of the catchment for the period 1979 to 1983 is reflected in terms of pie-diagrams for each station. The pie-diagrams are divided into 7 segments which reflect the percentage contribution of the major ions to the TDS of the waters. The seven segments are:

White - Total alkalinity expressed as bicarbonate

Blue - Calcium

Green - Magnesium

Grey - Sodium

Red - Sulphate

Yellow - Chloride

Black - Nitrate, nitrite, fluoride, phosphate, silica and potassium.

 Adamson, P.T. and Dixon, M.J. (1983) On the application of two log-normal distributions to the analysis of water quality data. Water S.A., 9, 1-8. The diameter of the circle is proportional to the TDS concentration which is given underneath each pie-diagram on the water quality map. A double log-normal distribution model was fitted to the calculated TDS data as described under Section 4.3. The TDS concentrations shown on the map are the estimated population medians obtained by using this procedure.

OVERVIEW OF THE WATER QUALITY

This section of the report provides a general overview of the major chemical quality of the Vaal River catchment based on data collected in the Department's water quality monitoring program from 1979 to 1983. Total dissolved solids and certain selected anions and cations such as calcium, magnesium, sodium, alkalinity, sulphate and chloride will, for most part form the basis of discussion throughout this section. The chemical data were extracted from the Water Quality Database representing approximately 30 to 300 samples collected at each sampling station during the five year period 1979 to 1983.

Figures 5 to 7 are schematic plots showing the range, median and the 25th and 90th percentiles for TDS at selected sampling stations Upper, Middle and Lower Vaal in the The relative composition, based on median respectively. concentrations (meg/L) of the major anions and cations for some of these stations and the same periods are shown in Figures 8 to 10. The relative contribution of potassium is less than 5% for all the stations and is not included in the figures. These figures demonstrate the widely different characteristics of the catchment's surface water quality from region to region. Low TDS waters generally occur in the Upper Vaal region, whereas highly mineralized waters are predominant in the Middle and Lower Vaal River segments. In addition, ion dominance changes markedly from region to region.

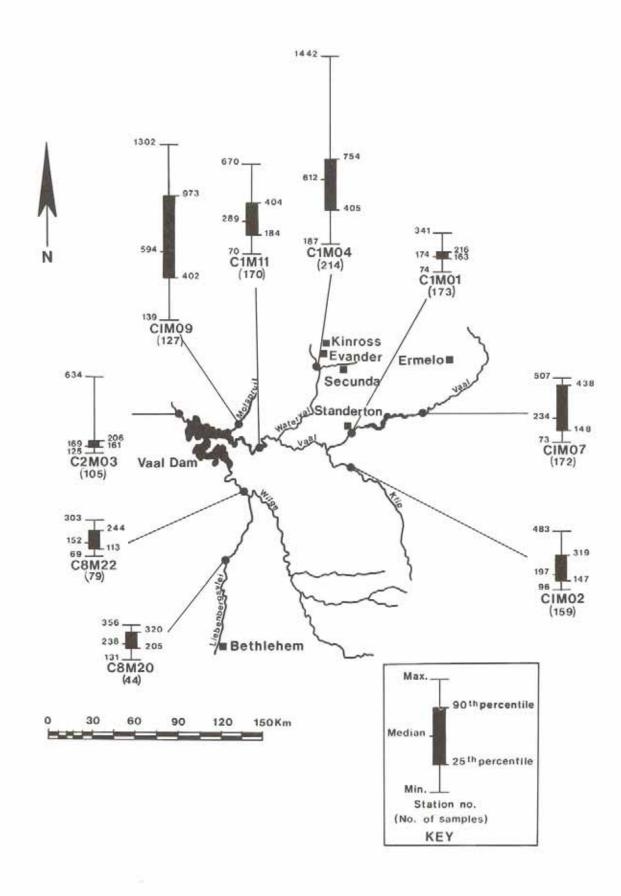


Figure 5: The median, range and the 25th and 90th percentiles of total dissolved solid concentrations at selected sampling stations in the Upper Vaal River catchment for the period 1979 to 1983.

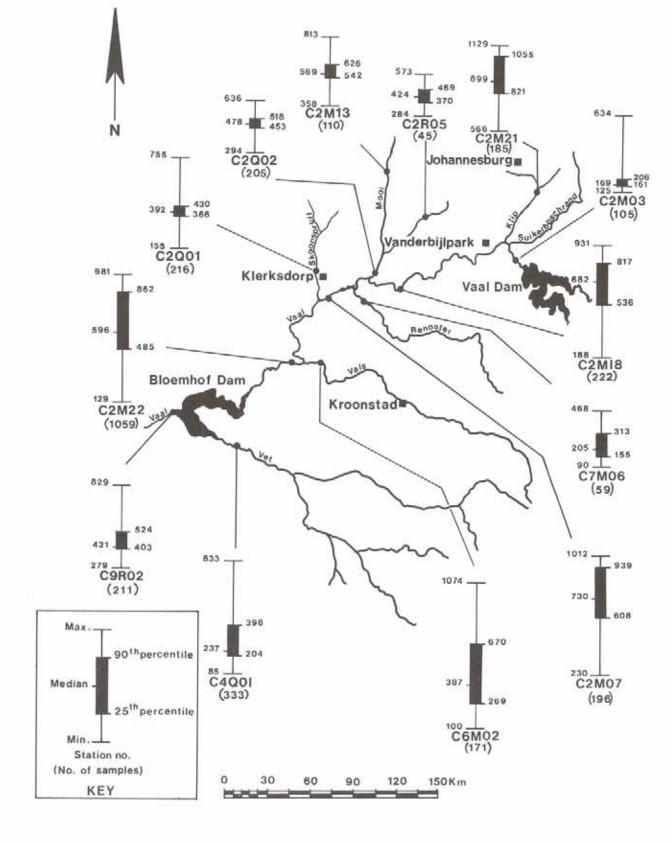


Figure 6: The median, range and the 25th and 90th percentiles of total dissolved solid concentrations at selected sampling stations in the Middle Vaal River catchment for the period 1979 to 1983.

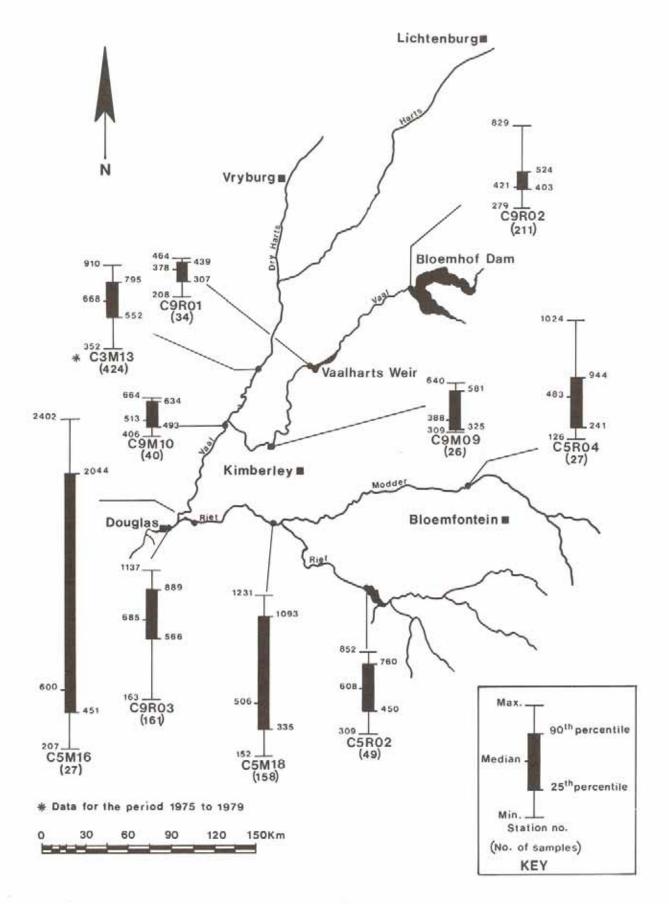


Figure 7: The median, range and the 25th and 90th percentiles of total dissolved solid concentrations at selected sampling stations in the Lower Vaal River catchment for the period 1979 to 1983.

Low levels of certain chlorinated pesticides and herbicides have been found in the surface waters of the catchment (Hassett, Viljoen and Liebenberg, 1987). A number of phenolic and other anthropogenic organic compounds have also been identified in the water immediately downstream of the Barrage (van Steenderen, Theron and Hassett, 1986). The significance of the occurrence of these organics and pesticides is not known at this time. In general, however, little information on trace metals and organic contaminants is available for the catchment apart from a study of the Vaal River between the Vaal Barrage and Douglas Weir undertaken in 1983 (Bruwer, et al 1985).

5.1 Upper Vaal catchment (W)

Most of the rivers in the Upper Vaal catchment are generally considered to be of a good mineral quality for the intended use of the water. Median TDS concentrations in the Vaal River and major tributaries range from approximately 150 mg/% to 290 mg/R (Figure 5) and based on the mineral content, the Wilge (C8MO1), Klip (C1M11) and Vaal (C1MO1 and C1M11) Rivers are typical of most of the surface waters in the region and have, for most part very similar ionic compositions. For all these waters calcium and magnesium are the predominant cations and bicarbonate is the predominant anion (Figure 8). Two exceptions are the Waterval River, draining the areas of Leslie, Evander, Kinross and Secunda and the Molspruit, draining the Grootvlei power station and coal mining areas. Median TDS concentrations for the Waterval River (C1MO4) and Molspruit (C1MO9) are 612 mg/% and 594 mg/% respectively. These waters contain a predominance of sodium and increased contributions from chloride and sulphate (Figure 8). The Vaal River reach between C1MO1 at Standerton and the C1M11 station downstream of the Waterval River confluence shows an increase in median TDS concentration from 174 mg/L to 289 mg/L (Figure 5). The impact of these sources of TDS on the Vaal Dam mineral quality, is to a large extent ameliorated by the inflow of low TDS waters from the south (Wilge River and tributaries).

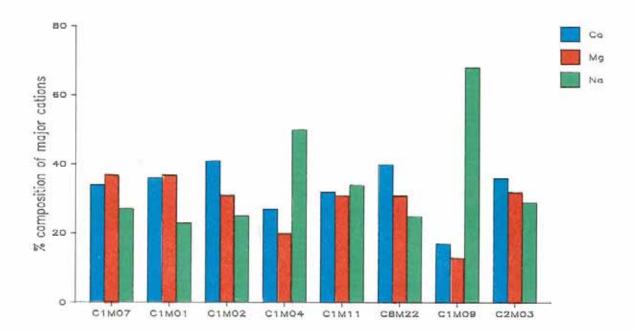


Figure 8a: The progression of major cation composition changes at selected sampling stations in the Upper Vaal River catchment.

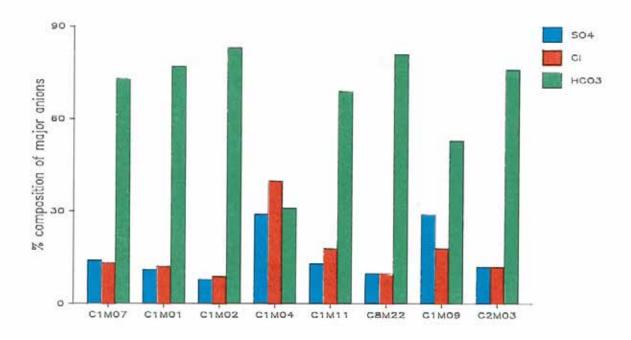


Figure 8b: The progression of major anion composition changes at selected sampling stations in the Upper Vaal River catchment.

A potential source of sulphate is atmospheric deposition caused by thermal power stations, burning coal heaps and other coal related industries. The significance of the latter sources of sulphate in this segment of the catchment is not known at this time.

5.2 Middle Vaal catchment (W)

Water quality in the Middle Vaal catchment varies substantially throughout the entire region. As shown in Figures 6 and 9 the TDS concentrations and ionic compositions of the Middle Vaal River and most tributaries are markedly different to those of the Upper Vaal region. The upper segment of the Middle Vaal River, between Vaal Dam (C2MO3) and Orkney Weir (C2MO7). draining the southern Witwatersrand and West Rand areas, are dominated by high TDS point and non-point sources. quality conditions in this river segment are the worst of the entire Vaal River catchment, due to industrial and municipal waste water discharges, urban run-off and point and non-point source loads from the extensive mining activities in the southern Witwatersrand and West Rand areas. The mining. industrial and urban dominated reach begins at the confluences of the Suikerboschrand and Klip Rivers and continues through the Barrage past the confluences of the Mooi River, Renoster River and Skoonspruit, and ends at the Orkney Weir.

Figure 9 shows the progression of major ion composition changes for the Middle Vaal River and selected tributaries. The Klip River (median TDS of 899 mg/ Ω) is predominantly a calcium-sulphate type water with nearly equal contributions from sodium and magnesium. Inflows from the Suikerboschrand tributary (median TDS 733 mg/ Ω) contain predominantly sodium and sulphate with some contribution from chloride.

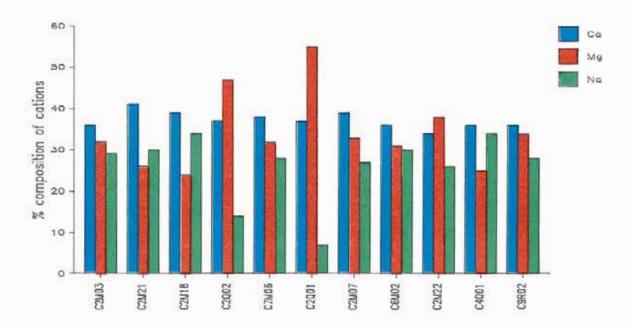


Figure 9a: The progression of major cation composition changes at selected sampling stations in the Middle Vaal River catchment.

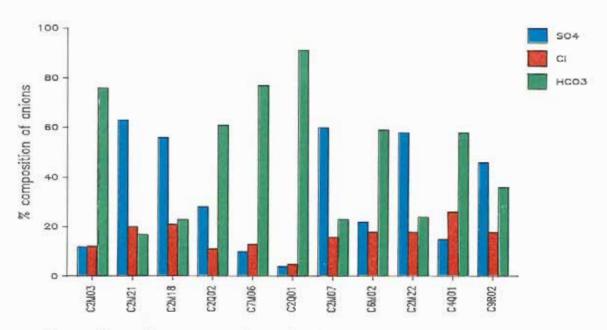


Figure 9b: The progression of major anion composition changes at selected sampling stations in the Middle Vaal River catchment.

Median TDS concentrations in the Vaal River (Figure 6) increase from 170 mg/L at the Vaal Dam (C2MO3) to 682 mg/L at Schoemansdrif (C2M18) and 730 mg/L at Orkney Weir (C2M07). This represents an increase in median TDS concentration of approximately four times that of the water released from Vaal In this segment of the Vaal River, waters tend to be of a sulphate type with substantial contributions from sodium and magnesium, the bicarbonate being considerably reduced. The lower reach of the Mooi River (C2QO2) is less mineralized (median TDS concentration of 478 mg/2) than the upstream tributaries, the percentage cations being nearly equal for calcium and magnesium, while bicarbonate is the predominant anion with some contribution from sulphate. The Skoonspruit is alkaline earth-bicarbonate water with a concentration of 392 mg/L in the lower reach (C2Q01) The Renoster River (C7MO6) to the east of this segment is a low TDS concentration of 205 mg/2), calcium and (median magnesium-bicarbonate type water.

Between Orkney Weir (C2MO7) and Bloemhof Dam (C9RO2) the TDS concentration in the Vaal River gradually decreases (Figure 6). Sulphate however is the dominant anion throughout this segment (Figure 9), the percentage contributions of calcium, magnesium and sodium remaining relatively constant. The decreasing TDS in this reach is to some extent due to the inflow of lower TDS waters from the Vals and Vet Rivers to the east of the main The Vals River (C6MO2) is predominantly an water course. earth-bicarbonate type water with median alkaline concentrations ranging from approximately 200 mg/l in the upper reaches (not shown) to 387 mg/L at the confluence. Similarly, the upper reaches of the Vet River are alkaline earth-bicarbonate type waters with an increased contribution of sodium in the lower reach. Median TDS concentrations range from 170 mg/l in the upper catchment (not shown) to 237 mg/l near the confluence (C4Q01). However, the substantially lower TDS concentration (420 mg/l) at Bloemhof Dam (C9RO2) is for most part due to storage attenuation.

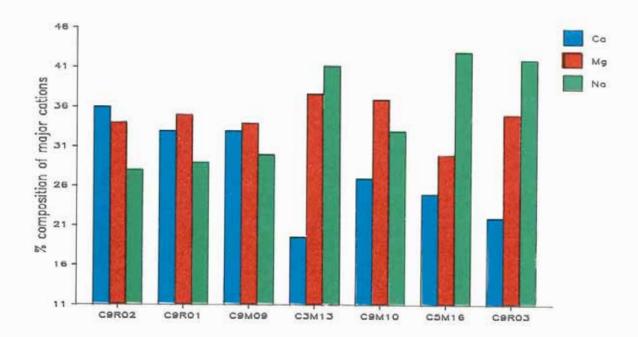


Figure 10a: The progression of major cation composition changes at selected sampling stations in the Lower Vaal River catchment.

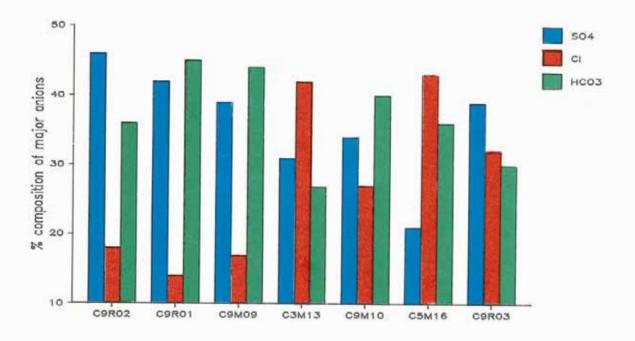


Figure 10b: The progression of major anion composition changes at selected sampling stations in the Lower Vaal River catchment.

5.3 Lower Vaal catchment (W)

Water quality conditions in the Lower Vaal River are dominated by extensive agricultural activities, the primary effects of this dominance are increasing TDS, sodium and chloride concentrations. Median TDS concentrations in the Vaal River decrease from 421 mg/2 at Bloemhof Dam (C9RO2) to 378 mg/2 at Vaalharts Weir (C9RO1) and 388 mg/2 at the C9MO9-station upstream of the Harts/Vaal River confluence (Figure 7). After the confluence, TDS concentrations in the Vaal River increase from a median TDS of 513 mg/2 at the C9M10-station downstream of the Harts River confluence to 685 mg/2 at Douglas Weir (C9MO3). In this segment, the Vaal River receives high TDS inflows (containing predominantly sodium and chloride) from the Harts River draining from the north, the Riet River from the east and the Douglas Irrigation Scheme.

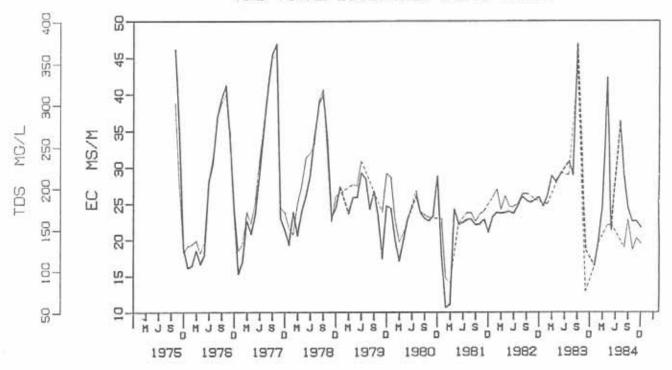
Figure 10 shows the progression of major ion composition changes for the Lower Vaal River and selected stations on the Harts and Riet Rivers. Between Bloemhof Dam and the Harts River confluence the major ion composition of the Vaal River remains relatively constant. After the confluence, inflows from the Harts and Riet Rivers and the Douglas Irrigation scheme cause an increase in the percentage contributions of sodium chloride. The upper reaches of the Harts River are high TDS (median concentrations ranging from approximately 750 mg/2 to 880 mg/l) waters, while the percentage contributions of sodium and chloride increase in the lower reach due to the addition of irrigation return flow from the Vaalharts Irrigation Scheme. Median TDS concentrations in the lower reach of the Riet River increase from 508 mg/L at the C5M18 station to 685 mg/L near the Vaal River confluence. In this segment of the Riet River the ion dominance changes to sodium and chloride.

APPENDIX A: SUMMARIZED WATER QUALITY DATA FOR THE VAAL RIVER CATCHMENT

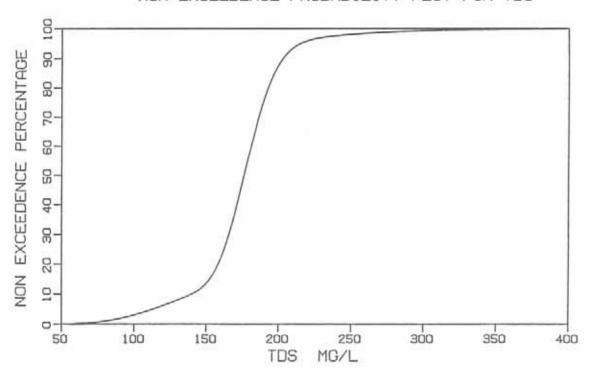
STATION NUMBER: C1MO1

NAME: VAAL RIVER AT STANDERTON

LATITUDE: 26°56'30" S LONGITUDE 29°16'00" E


TYPE: GAUGING WEIR

	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/10/13	3 TO 86/10	0/07
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	393	173	87	86	1.01


		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.1	5.9	7.8	0.5	6.7	7.6
EC	(MS/M)	23.5	8.8	46.9	4.5	21.9	28.5
TDS	(MG/L)	174	74	341	45	163	216
CA	(MG/L)	18	6	32	5	16	21
MG	(MG/L)	11	4	19	3	10	13
NA	(MG/L)	13	8	36	4	11	15
K	(MG/L)	3.7	3.1	6.0	0.7	3.4	4.5
TAL	(MG/L HCO ₃	104	29	185	26	91	128
CL	(MG/L)	9	4	32	5	7	15
SO4	(MG/L)	12	2	27	5	9	17
F	(MG/L)	0.2	0.1	0.5	0.1	0.2	0.4
SI	(MG/L)	5.6	2.2	7.7	1.3	4.6	7.1
NO3	(MG/L N)	0.15	<0.02	2.46	0.53	0.08	0.90
PO ₄	(MG/L P)	0.022	<0.005	0.147	0.031	0.014	0.072

	CE PROBABILITY MAL DISTRIBUTI	PLOT FOR TDS ON PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.0104	(o ₁) 0.3617
2	(m ₂) 5.1819	(o ₂) 0.0883
PROPORTI	ONALITY FACTOR («) = .2311

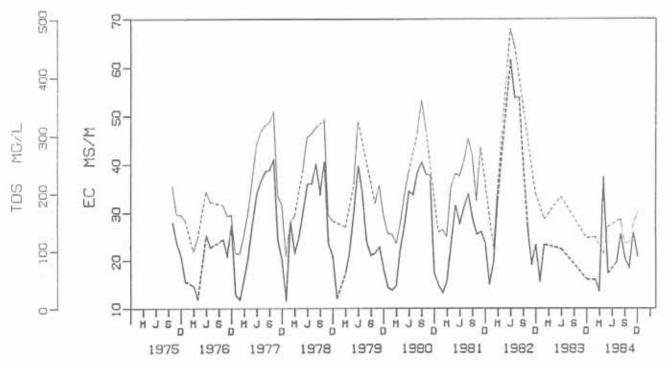
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NON EXCEEDENCE PROBABILITY PLOT FOR TDS

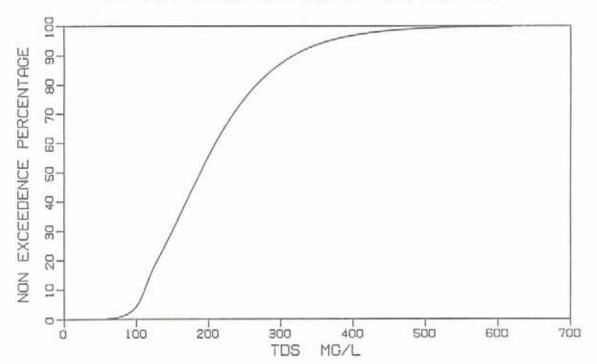
STATION NUMBER: C1MO2

NAME: KLIP RIVER AT DELANGESDRIFT

LATITUDE: 27°10'15" S LONGITUDE 29°14'00" E


TYPE: GAUGING WEIR

	SAM	IPLING INF	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	74/01/08	TO 85/09	5/28
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	331	159	92	67	1.37

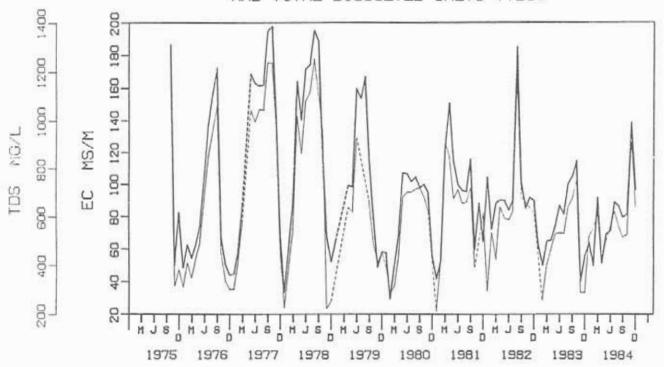

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.3	6.0	7.9	0.5	7.0	7.7
EC	(MS/M)	23.4	10.9	61.5	10.4	17.0	38.8
TDS	(MG/L)	197	96	483	90	147	319
CA	(MG/L)	20	7	53	10	15	32
MG	(MG/L)	9	5	27	6	7	20
NA	(MG/L)	14	6	40	7	10	24
K	(MG/L)	2.7	1.8	6.8	1.1	2.2	4.3
TAL	(MG/L HCO _s	111	47	340	69	77	220
CL	(MG/L)	7	<3	18	4	5	14
SO ₄	(MG/L)	8	<2	55	9	6	16
F	(MG/L)	0.3	0.1	0.6	0.1	0.2	0.4
SI	(MG/L)	6.6	2.5	9.3	1.5	5.4	7.7
NOa	(MG/L N)	0.10	<0.02	3.92	0.73	0.02	0.62
PO ₄	(MG/L P)	0.021	<0.005	0.212	0.037	0.009	0.053

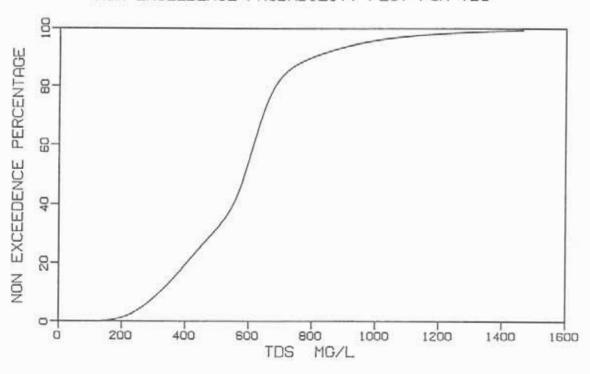
		PLOT FOR TDS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.2768	(ơ,) 0.3903
2	(4,) 4.7250	(σ _s) 0.0714

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NON EXCEEDENCE PROBABILITY PLOT FOR TOS

NAME: WATERVAL RIVER AT ROODEBANK


LATITUDE: 26°37'45" S LONGITUDE 29°01'30" E

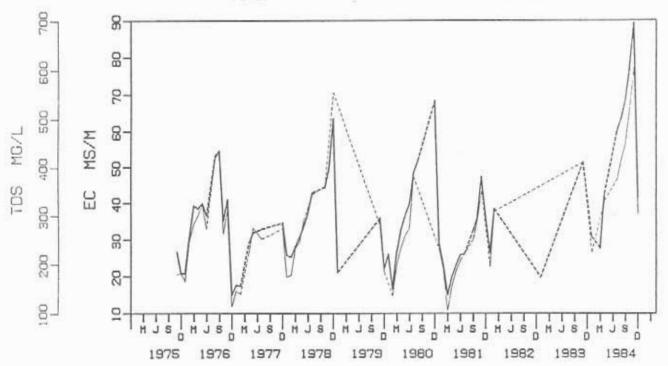

SAMPLING INFORMATION						
TOTAL	PERIOD OF	SAMPLING:	75/10/02	TO 84/12	2/03	
	TOTAL	1979-1983	SUMMER	WINTER	RATIO	
SAMPLES	493	214	103	111	0.93	

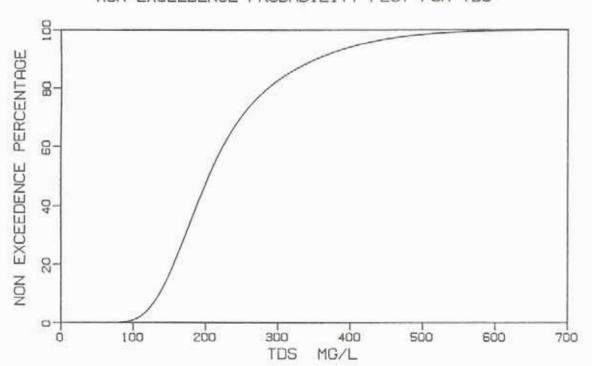
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.2	5.3	7.9	0.4	6.9	7.5
EC	(MS/M)	89.3	15.3	243.2	35.3	65.7	124.6
TDS	(MG/L)	612	187	1442	218	405	754
CA	(MG/L)	47	15	77	15	34	62
MG	(MG/L)	21	1 1	31	6	16	28
NA	(MG/L)	102	16	335	55	64	145
K	(MG/L)	11.1	3.4	19.6	4.0	7.1	15.6
TAL	(MG/L HCO ₃	142	9	194	36	120	180
CL	(MG/L)	104	16	538	79	71	172
SO4	(MG/L)	103	14	269	48	73	160
F	(MG/L)	0.9	0.2	17.4	2.2	0.7	2.6
SI	(MG/L)	6.1	<0.4	11.2	2.1	4.8	8.2
NOa	(MG/L N)	4.89	<0.02	24.74	5.27	2.13	10.88
PO ₄	(MG/L P)	0.957	0.040	5.172	1.326	0.315	3.437

TO MESSAGE INC. INC. SOCIETY AND INC. PROPERTY AND	CE PROBABILITY RMAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m _i) 6.2273	(o ₁) 0.4477
2	(m ₂) 6.4261	(σ ₂) 0.0794
PROPORTI	ONALITY FACTOR (∝) = .6480

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: LEEU SPRUIT AT WELBEDACHT


LATITUDE: 26°51'15" S LONGITUDE 29°19'30" E

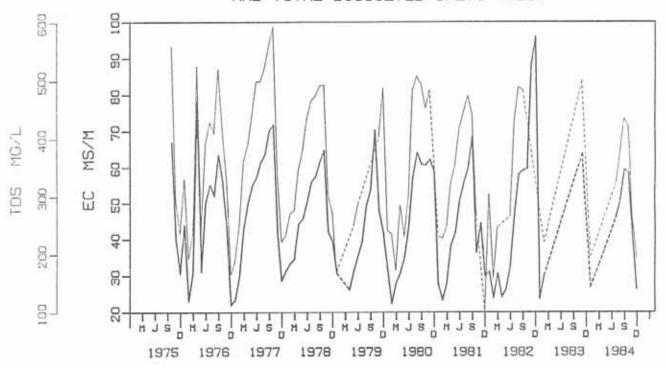

SAMPLING INFORMATION						
TOTAL	PERIOD OF	SAMPLING:	74/01/1	7 TO 86/09	9/16	
	TOTAL	1979-1983	SUMMER	WINTER	RATIO	
SAMPLES	305	76	48	28	1.71	

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.0	6.0	7.9	0.6	6.7	7.7
EC	(MS/M)	26.0	10.8	71.7	12.0	21.4	47.2
TDS	(MG/L)	221	89	411	87	187	369
CA	(MG/L)	19	7	33	7	15	30
MG	(MG/L)	16	6	30	7	11	27
NA	(MG/L)	17	9	33	7	1.1	25
K	(MG/L)	4.8	4.2	7.0	0.7	4.5	5.7
TAL	(MG/L HCO3	132	40	257	61	96	233
CL		13	7	29	6	10	25
SO4	(MG/L)	17	2	37	8	11	27
F	(MG/L)	0.3	0.2	0.6	0.1	0.2	0.5
SI	(MG/L)	8.1	1.9	11.7	2.7	6.3	11.2
NO _a	(MG/L N)	0.06	<0.02	0.85	0.18	0.03	0.27
PO ₄	(MG/L P)	0.022	0.007	0.074	0.022	0.012	0.063

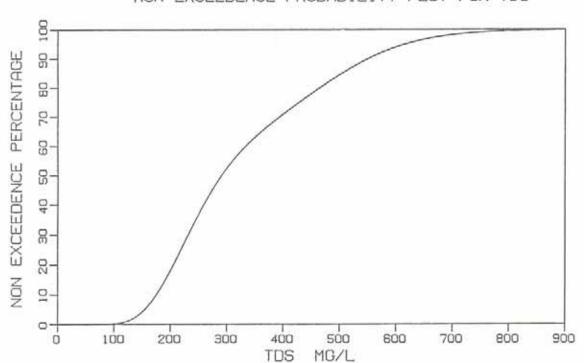
MIXED LOG-NOF	RMAL DISTRIBUT	ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.8893	(o ₁) 0.2417
2	(4,) 5.2495	(0,) 0.2825

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: BLESBOK SPRUIT AT RIETVLEY


LATITUDE: 26°46'30" S LONGITUDE 29"32'30" E

SAMPLING INFORMATION						
TOTAL	PERIOD OF	SAMPLING:	74/01/17	7 TO 86/09	9/30	
	TOTAL	1979-1983	SUMMER	WINTER	RATIO	
SAMPLES	434	170	90	80	1.13	

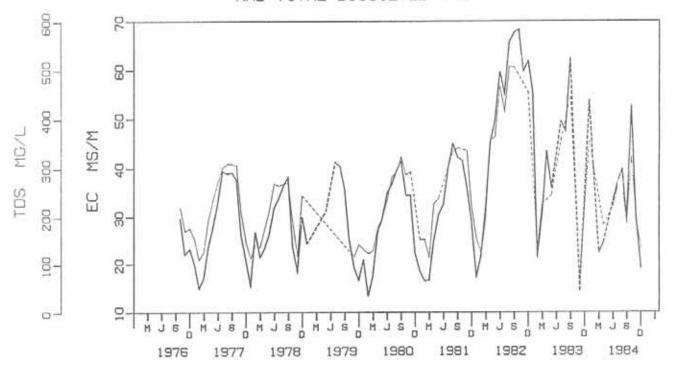

	Į	VATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.5	6.3	8.0	0.5	7.0	7.9
EC	(MS/M)	37.6	9.7	103.0	18.5	29.9	63.9
TDS	(MG/L)	300	100	524	123	234	489
CA	(MG/L)	26	5	50	1 1	20	44
MG	(MG/L)	20	4	37	9	15	33
NA	(MG/L)	25	12	102	16	20	42
K	(MG/L)	3.7	0.9	6.5	1.0	3.2	5.2
TAL	(MG/L HCO _s)	171	23	352	86	128	305
CL	(MG/L)	17	7	93	14	12	34
SO4	(MG/L)	18	3	68	13	15	42
F	(MG/L)	0.3	0.1	0.6	0.1	0.2	0.5
SI	(MG/L)	7.9	1.5	11.9	2.5	6.3	10.5
NOa	(MG/L N)	0.12	<0.02	3.66	0.66	0.03	0.75
PO4	(MG/L P)	0.053	<0.005	0.409	0.069	0.032	0.120

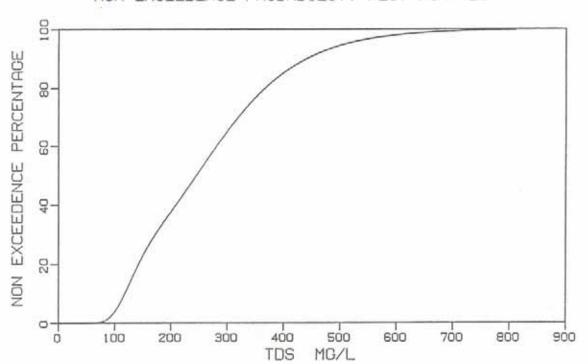
		PLOT FOR TOS
COMPONENT STRIBUTION	MEAN	STD DEV
1	(u ₁) 6.2162	(o ₁) 0.2126
2	(u ₂) 5.5078	(o ₂) 0.3157
PROPORTIC	NALITY FACTOR («	

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VAAL RIVER AT UITSPANNING

LATITUDE: 26°50'30" S LONGITUDE 29°43'15" E


TYPE: RIVER SECTION


SAMPLING INFORMATION						
TOTAL	PERIOD OF	SAMPLING:	74/01/16	5 TO 84/1:	2/04	
	TOTAL	1979-1983	SUMMER	WINTER	RATIO	
SAMPLES	395	172	95	77	1.23	

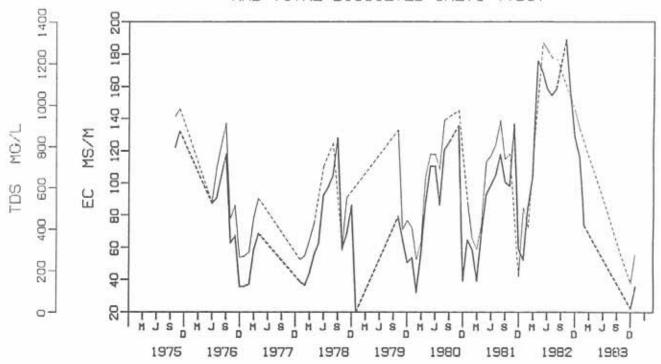
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.2	6.0	8.4	0,6	6.8	8.0
EC	(MS/M)	33.5	8.0	93.6	16.8	21.3	62.2
TDS	(MG/L)	234	73	507	120	148	438
CA	(MG/L)	23	8	39	8	15	29
MG	(MG/L)	15	5	29	7	8	23
NA	(MG/L)	21	5	93	21	12	51
K	(MG/L)	3.2	1.5	6.5	1.2	2.6	5.2
TAL	(MG/L HCO,	140	<4	259	64	78	213
CL	(MG/L)	14	3	50	12	9	32
SO4	(MG/L)	21	5	94	21	13	46
F	(MG/L)	0.3	0.1	0.9	0.2	0.2	0.5
SI	(MG/L)	5.4	1.0	8.6	2.2	3.7	7.9
NO.	(MG/L N)	0.11	<0.02	13.72	2.20	0.05	0.76
PO4	(MG/L P)	0.015	<0.005	0.217	0.040	0.007	0.064

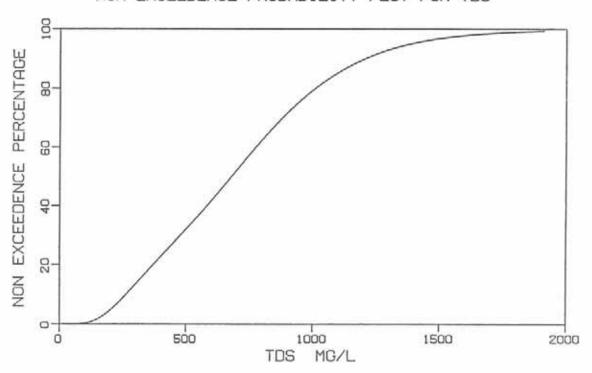
MIXED LOG-NOF	RMAL DISTRIBUTIO	N PARAM	1ETERS		
COMPONENT DISTRIBUTION	MEAN	ST	STD DEV		
1	(m ₁) 4.8739	(👣)	0.2341		
2	(4,) 5.6945	(0,)	0.3628		

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: MOLSPRUIT AT LEEUFONTEIN

LATITUDE: 26°55'00" S LONGITUDE 28°26'15" E


TYPE: RIVER SECTION


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/10/20	TO 84/0	1/02
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	210	127	69	58	1.19

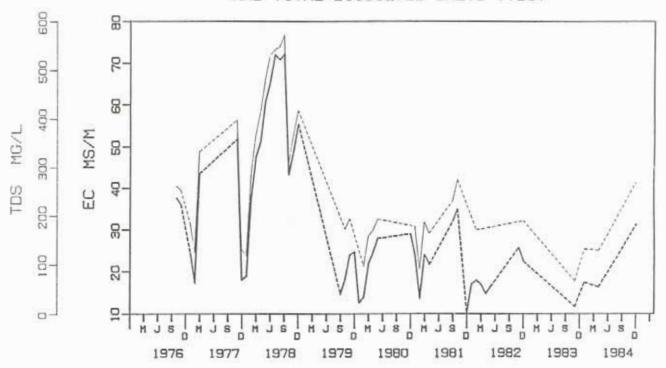
	Į.	VATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	6.4	8.7	0.5	7.3	8.1
EC	(MS/M)	94.7	18.1	188.9	44.1	59.8	159.2
TDS	(MG/L)	594	139	1302	319	402	973
CA	(MG/L)	28	10	57	9	22	39
MG	(MG/L)	13	5	23	4	10	18
NA	(MG/L)	128	18	309	87	68	239
K	(MG/L)	5.8	1.7	14.7	2.4	4.8	9.3
TAL	(MG/L HCO _a)	248	55	497	116	199	417
CL	(MG/L)	49	6	157	30	31	89
SO ₄	(MG/L)	109	8	332	85	41	232
F	(MG/L)	1.8	0.2	4.5	1.1	1.2	3.4
SI	(MG/L)	4.0	<0.4	8.5	2.5	2.2	7.1
NOa	(MG/L N)	0.10	<0.02	3.68	0.61	0.04	0.47
PO ₄	(MG/L P)	0.091	<0.005	0.419	0.091	0.070	0.249

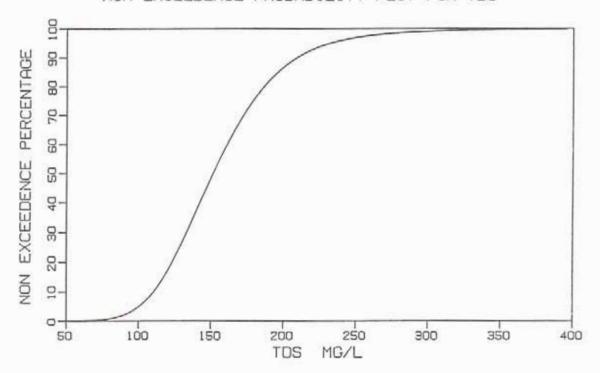
		PLOT FOR TDS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(w ₁) 6.0078	(ơ,) 0.5607
2	(u ₂) 6.7640	(o ₂) 0.3336

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: BANKPLAAS SPRUIT AT SWEET HOME

LATITUDE: 27°04'30" S LONGITUDE 28°34'00" E


TYPE: RIVER SECTION


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	76/10/11	. TO 86/03	3/10
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	149	79	57	22	2.59

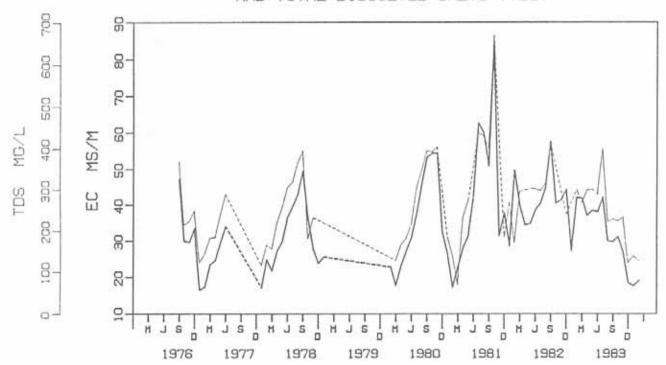
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.9	6.0	8.0	0.5	6.6	7.6
EC	(MS/M)	19.5	6.1	49.8	7.3	15.1	28.9
TDS	(MG/L)	172	67	296	57	148	241
CA	(MG/L)	15	6	24	5	11	20
MG	(MG/L)	8	4	17	3	7	12
NA	(MG/L)	16	8	62	11	12	23
K	(MG/L)	4.8	3.7	8.2	0.9	4.5	5.6
TAL	(MG/L HCO ₃) 94	13	168	33	76	126
CL	(MG/L)	12	7	95	18	10	15
SO_4	(MG/L)	6	<2	22	6	5	16
F	(MG/L)	0.4	0.1	0.8	0.2	0.3	0.6
SI	(MG/L)	6.4	1.4	7.8	1.5	5.3	7.4
NO ₃	(MG/L N)	0.25	0.02	1.74	0.38	0.05	0.65
PO4	(MG/L P)	0.051	0.008	0.244	0.063	0.020	0.135

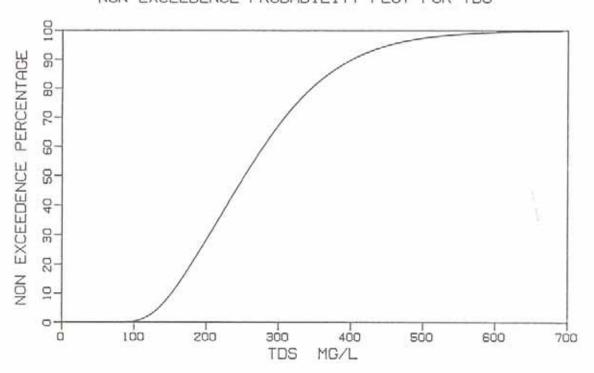
DIZIKIBNIION	PARAMETERS
MEAN	STD DEV
(w ₁) 5.0689	(ơ,) 0.3700
(u ₂) 5.0140	(o _z) 0.2293
	MEAN (w ₁) 5.0689

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VAAL RIVER AT VILLIERS (GROOT DRAAI)

LATITUDE: 27°01'00" S LONGITUDE 28°38'45" E


TYPE: RIVER SECTION


	SAM	PLING INFO	ORMATION	4	
TOTAL	PERIOD OF	SAMPLING:	76/09/2	7 TO 84/02	2/28
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	266	170	81	89	0.91

		WATER	QUALIT	Y STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.5	5.9	8.1	0.5	7.0	7.8
EC	(MS/M)	37.4	10.2	104.7	15.1	25.9	57.0
TDS	(MG/L)	289	70	670	115	184	404
CA	(MG/L)	24	6	56	9	20	36
MG	(MG/L)	14	4	27	6	1 1	23
NA	(MG/L)	29	7	113	20	21	58
K	(MG/L)	4.4	2.6	10.6	1.4	3.6	5.9
TAL	(MG/L HCO ₃)	140	29	243	51	96	211
CL	(MG/L)	21	<3	136	25	14	60
SO4	(MG/L)	21	2	150	23	15	44
F	(MG/L)	0.5	0.2	1.3	0.3	0.3	1.0
SI	(MG/L)	4.8	1.2	8.2	2.1	2.4	7.4
NO ₃	(MG/L N)	0.21	<0.02	5.85	0.93	0.04	0.67
PO ₄	(MG/L P)	0.039	<0.005	0.445	0.068	0.020	0.082

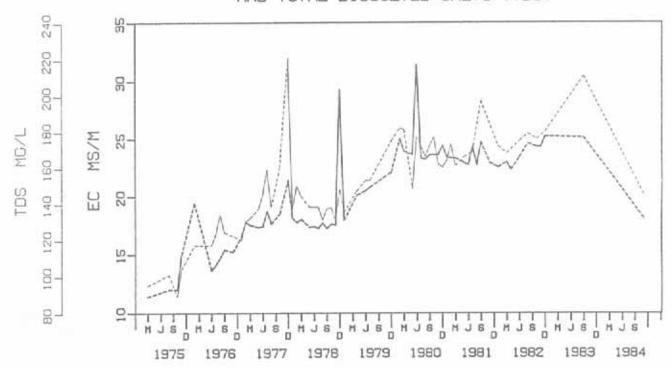
	CE PROBABILITY MAL DISTRIBUTIO	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.1125	(σ _i) 0.2383
2	(u ₂) 5.6442	(σ_z) 0.3094
PROPORT I	ONALITY FACTOR (∝)	= .2357

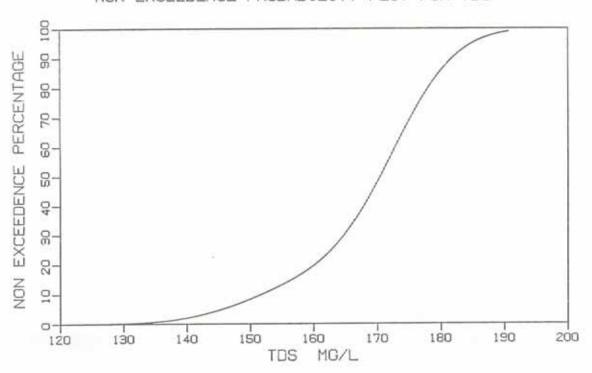
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC) AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C1R0101

NAME: VAAL DAM: NEAR DAM WALL

LATITUDE: 26°53'00" S LONGITUDE 28°07'00" E


TYPE: SAMPLING POINT IN DAM BASIN

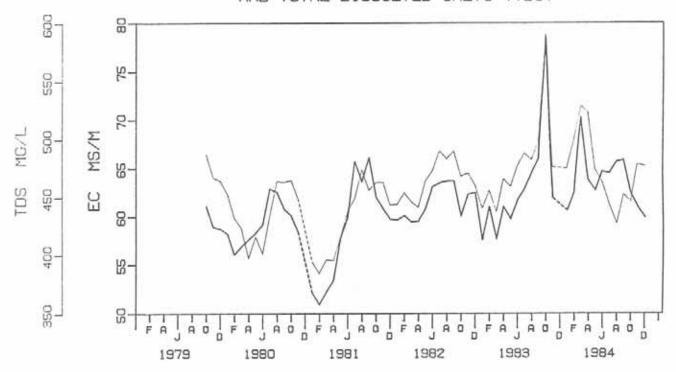

	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	68/04/01	TO 86/09	9/30
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	165	42	19	23	0.83

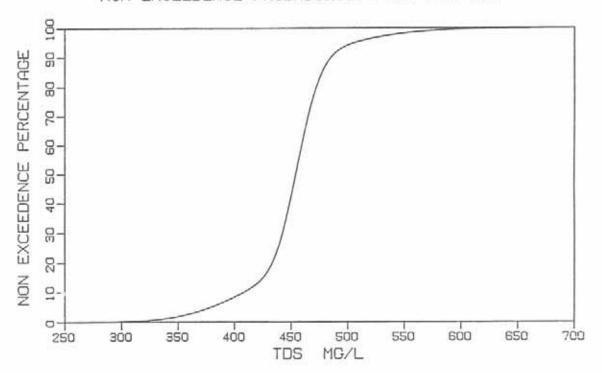
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.2	6.3	7.9	0.4	6.8	7.6
EC	(MS/M)	23.4	17.9	31.4	2.0	22.6	24.9
TDS	(MG/L)	172	135	211	14	161	182
CA	(MG/L)	17	14	21	1	16	18
MG	(MG/L)	9	7	12	1	9	10
NA	(MG/L)	16	10	19	2	15	17
K	(MG/L)	3.3	2.5	4.7	0.4	3.2	4.0
TAL	(MG/L HCO3	96	81	112	7	93	106
CL	(MG/L)	9	<3	19	3	9	1 1
SO ₄	(MG/L)	12	5	34	6	9	17
F	(MG/L)	0.3	0.2	0.6	0.1	0.3	0.5
SI	(MG/L)	4.1	2.7	6.1	0.9	3.7	5.3
NO ₃	(MG/L N)	0.04	<0.02	2.41	0.52	0.02	0.25
PO	(MG/L P)	0.008	<0.005	0.063	0.018 <	0.005	0.050

	ICE PROBABILITY RMAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ _i) 5.0396	(σ ₁) 0.0714
2	(42) 5.1534	(0,) 0.0436

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: MODI RIVER AT WITRAND


LATITUDE: 26°39'00" S LONGITUDE 27°05'15" E

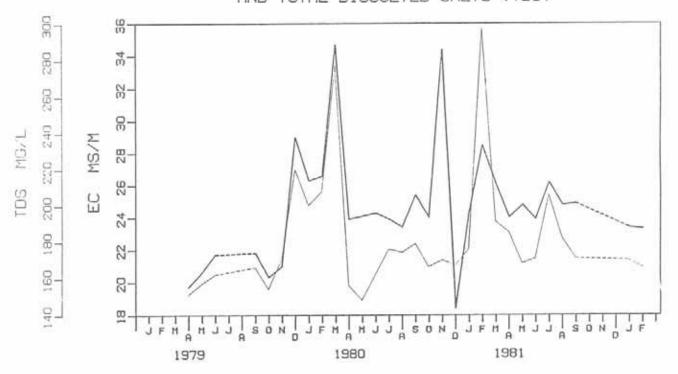

	SAM	PLING INFO	ORMAT I ON		
TOTAL	PERIOD OF	SAMPLING:	79/10/01	TO 86/10	0/07
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	333	189	96	93	1.03

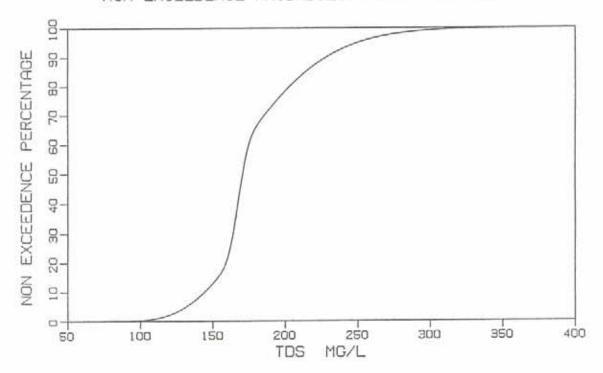
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.8	6.5	8.7	0.4	7.5	8.3
EC	(MS/M)	60.1	37.9	122.2	5.9	58.6	64.7
TDS	(MG/L)	453	279	891	46	441	488
CA	(MG/L)	51	31	94	6	48	57
MG	(MG/L)	38	23	59	3	36	40
NA	(MG/L)	18	9	72	4	17	20
K	(MG/L)	1.8	1.1	11.1	0.8	1.7	2.2
TAL	(MG/L HCO ₃	238	157	304	22	228	266
CL	(MG/L)	18	9	86	9	15	24
SO4	(MG/L)	77	38	258	21	73	87
F	(MG/L)	0.1	<0.1	0.5	0.1	0.1	0.2
SI	(MG/L)	6.6	4.6	8.2	0.7	6.3	7.7
NOa	(MG/L N)	0.55	<0.02	2.88	0.37	0.40	0.94
PO ₄	(MG/L P)	0.011	<0.005	2.426	0.183	0.005	0.041

E PROBABILITY P 1AL DISTRIBUTION	
MEAN	STD DEV
(m ₁) 6.0799	(o _i) 0.1421
(u ₂) 6.1226	(o ₂) 0.0346
	MEAN (M1) 6.0799

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VAAL RIVER AT ENGELBRECHTSDRIFT


LATITUDE: 26°49'15" S LONGITUDE 28°03'45" E

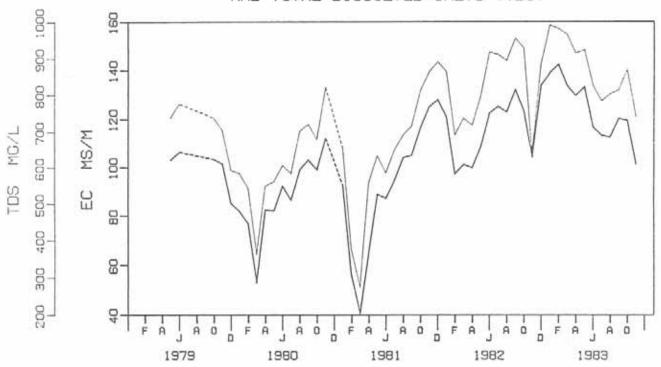

	SAM	PLING INFO	ORMATION	[
TOTAL	PERIOD OF	SAMPLING:	79/04/30	TO 82/0:	2/01
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	105	105	52	53	0.98

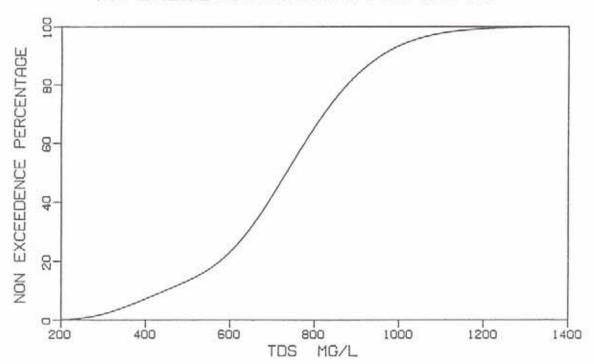
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.9	5.7	8.0	0.4	6.7	7.4
EC	(MS/M)	23.9	9,8	73.0	7.4	23.0	27.7
TDS	(MG/L)	169	125	634	56	161	206
CA	(MG/L)	17	12	72	6	16	21
MG	(MG/L)	9	7	43	4	9	12
NA	(MG/L)	16	10	29	2	15	17
K	(MG/L)	3.2	1.4	4.3	0.4	3.1	3.5
TAL	(MG/L HCO _a) 99	77	398	35	92	122
CL	(MG/L)	9	5	48	5	8	13
SO ₄	(MG/L)	12	7	41	5	10	18
F	(MG/L)	0.3	0.1	0.5	0.1	0.3	0.4
SI	(MG/L)	4.4	3.0	16.1	2.0	4.2	6.4
NO ₃	(MG/L N)	0.03	<0.02	7.62	0.92	<0.02	0.40
PO4	(MG/L P)	0.009	<0.005	0.054	0.012	0.005	0.028

		Y PLOT FOR TDS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m _i) 5.2004	(σ _i) 0.2232
2	(m ₂) 5.1221	(0,) 0.0316

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VAAL RIVER AT PILGRIMS ESTATE


LATITUDE: 27°00'45" S LONGITUDE 26°42'00" E

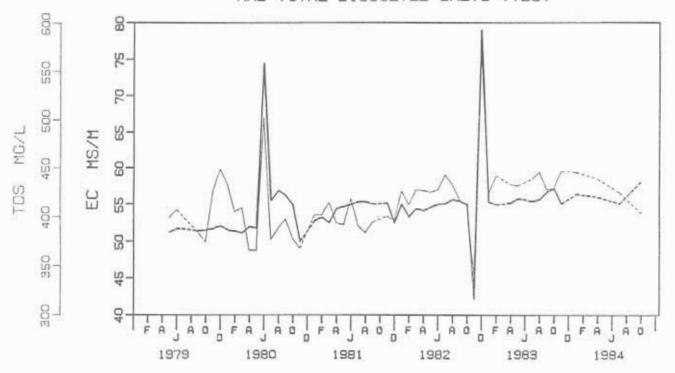

	SAM	IPLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	79/05/29	9 TO 85/00	5/13
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	332	196	105	91	1.15

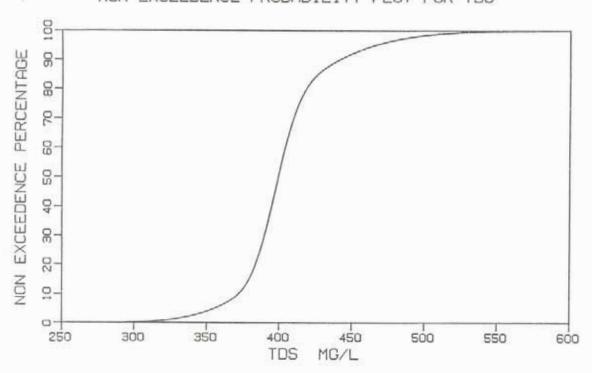
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.7	6.0	8.5	0.5	7.2	8.2
EC	(MS/M)	104.9	33.6	151.0	24.7	89.5	132.7
TDS	(MG/L)	730	230	1012	176	608	939
CA	(MG/L)	85	30	132	22	75	117
MG	(MG/L)	43	13	60	10	36	51
NA	(MG/L)	67	19	117	22	51	98
K	(MG/L)	9.2	0.3	18.4	3.0	7.7	13.3
TAL	(MG/L HCO ₃	148	56	207	28	131	186
CL	(MG/L)	60	16	150	24	42	91
SO4	(MG/L)	304	39	485	95	242	420
F	(MG/L)	0.6	0.2	1.2	0.2	0.5	0.9
SI	(MG/L)	2.4	<0.4	6.1	1.4	1.4	4.7
NO3	(MG/L N)	0.94	<0.02	10.64	1.15	0.46	1.56
PO ₄	(MG/L P)	0.053	<0.005	0.306	0.055	0.030	0.142

EAN STD DEV
3.0830 (J ₁) 0.300
6.6476 (o ₂) 0.18

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: GERHARDMINNEBRON EYE AT GERHARDMINNEBRO


LATITUDE: 26°28'45" S LONGITUDE 27°09'00" E

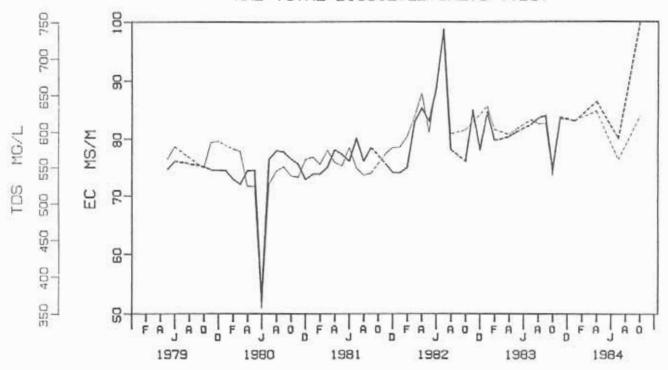

	SAM	IPLING INF	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	69/06/08	TO 86/09	3/24
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	139	109	60	49	1.22

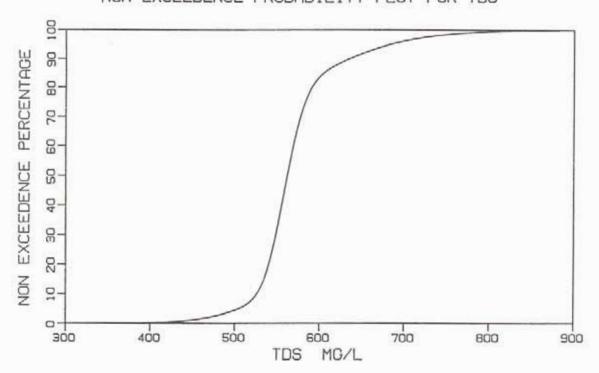
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.8	4.9	8.4	0.5	7.5	8.2
EC	(MS/M)	53.8	36.1	79.0	4.2	51.7	55.9
TDS	(MG/L)	404	288	571	36	389	439
CA	(MG/L)	53	34	70	5	51	56
MG	(MG/L)	33	17	43	3	32	35
NA	(MG/L)	9	4	27	3	8	11
K	(MG/L)	1.1	0.4	4.8	0.4	0.9	1.4
TAL	(MG/L HCO ₃	230	172	297	17	218	244
CL	(MG/L)	10	<3	24	4	8	15
SO4	(MG/L)	52	<2	151	17	49	68
F	(MG/L)	0.1	<0.1	0.4	0.1	0.1	0.3
SI	(MG/L)	8.1	5.4	9.6	0.5	7.9	8.4
NOa	(MG/L N)	2.26	0.07	12.40	1.51	2.10	2.51
PO ₄	(MG/L P)	0.011	<0.005	0.263	0.031	0.005	0.053

	NCE PROBABILITY RMAL DISTRIBUT	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(u ₁) 6.0097	(σ ₁) 0.1158
2	(u,) 5.9861	(0,) 0.0316

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: TURFFONTEIN EYES AT TURFFONTEIN


LATITUDE: 26°24'15" S LONGITUDE 27°10'30" E


	SAM	PLING INFO	ORMATION	٧	
TOTAL	PERIOD OF	SAMPLING:	69/06/08	6 TO 85/0'	7/19
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	134	110	60	50	1.20

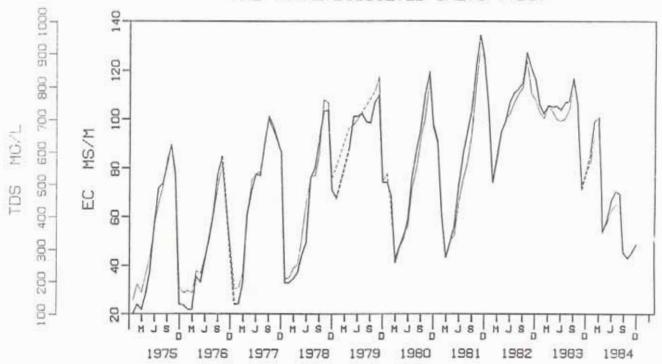
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.7	6.7	8.5	0.3	7.5	8.1
EC	(MS/M)	75.4	52.0	99.5	6.1	74.0	83.6
TDS	(MG/L)	569	358	813	60	542	626
CA	(MG/L)	71	49	98	8	69	78
MG	(MG/L)	42	31	47	2	41	44
NA	(MG/L)	28	8	56	7	27	34
K	(MG/L)	1.5	1.0	5.2	0.9	1.4	2.8
TAL	(MG/L HCO3	231	172	263	18	215	250
CL	(MG/L)	24	8	50	9	22	40
SO ₄	(MG/L)	147	50	279	34	143	178
F	(MG/L)	0.1	<0.1	0.6	0.1	0.1	0.3
SI	(MG/L)	8.4	7.0	200.0	20.2	8.2	8.9
NO3	(MG/L N)	2.29	0.49	11.08	1.60	2.16	2.69
PO ₄	(MG/L P)	0.010	<0.005	0.979	0.106	0.006	0.052

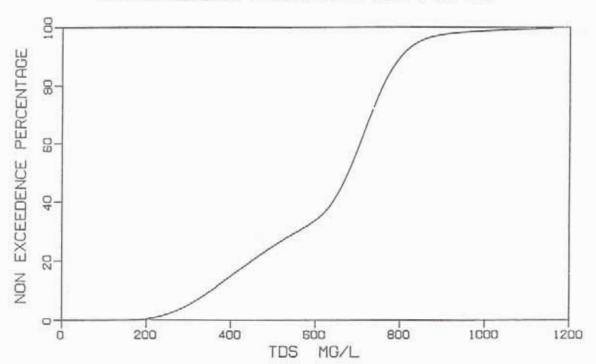
		PLOT FOR TOS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ _i) 6.3777	(σ ₁) 0.1442
2	(m ₂) 6.3265	(σ ₂) 0.0346
PROPORTI	ONALITY FACTOR («) = .3340

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VAAL RIVER AT SCHOEMANSDRIF

LATITUDE: 26*58'15" S LONGITUDE 27*12'45" E


TYPE: WEIR


	SAM	PLING INFO	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	72/08/01	TO 84/12	2/04
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	622	222	111	111	1.00

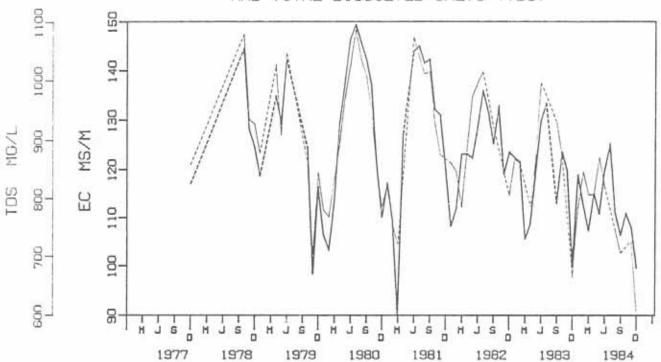
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	6.3	8.7	0.5	7.3	8.1
EC	(MS/M)	100.0	27.7	136.8	23.9	75.6	117.5
TDS	(MG/L)	682	188	931	163	536	817
CA	(MG/L)	79	24	123	20	60	97
MG	(MG/L)	29	10	42	7	23	35
NA	(MG/L)	80	17	118	23	63	102
K	(MG/L)	11.8	1.5	20.2	3.8	9.5	16.4
TAL	(MG/L HCO3	130	50	198	34	107	170
CL	(MG/L)	70	13	115	22	52	93
SO4	(MG/L)	253	36	412	82	203	346
F	(MG/L)	0.9	0.2	1.4	0.3	0.7	1.2
SI	(MG/L)	0.8	<0.4	6.1	1.5	0.4	4.0
NO ₃	(MG/L N)	0.04	<0.02	1.53	0.25	0.02	0.32
PO ₄	(MG/L P)	0.084	<0.005	0.841	0.110	0.048	0.246

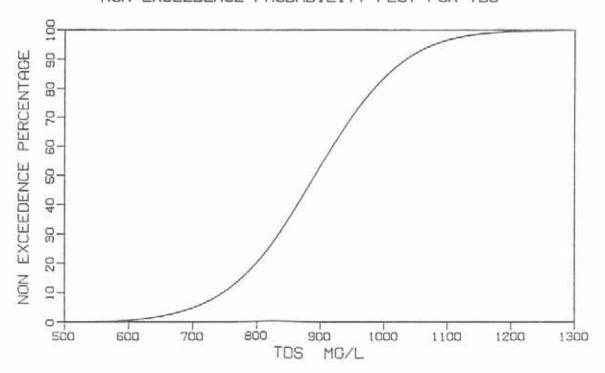
Compared to the contract of the second of the contract of the	CE PROBABILITY P MAL DISTRIBUTION	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 6.1546	(o _i) 0.3811
2	(μ_2) 6.5799	(ơ ₂) 0.0866
PROPORT I	ONALITY FACTOR (¢) =	. 4455

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: KLIP RIVER AT WITKOP

LATITUDE: 26°27'15" S LONGITUDE 28°05'15" E


TYPE: RIVER SECTION


	SAM	PLING INF	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	77/12/21	TO 86/10	3/27
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	322	185	88	97	0.91

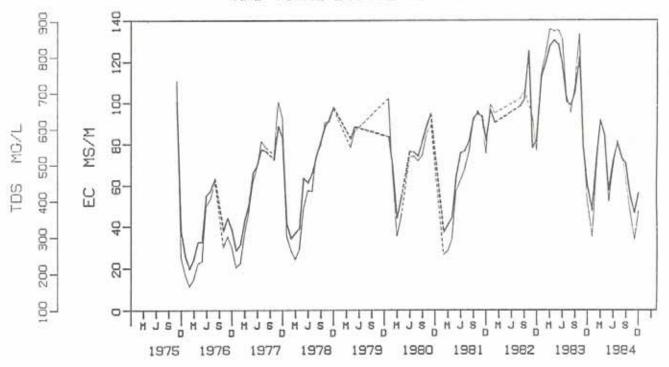
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTIL
PH	(PH UNITS)	7.2	6.2	8.3	0.3	7.0	7.7
EC	(MS/M)	125.5	76.0	157.2	15.6	116.0	144.6
TDS	(MG/L)	899	566	1129	121	821	1055
CA	(MG/L)	113	79	159	18	100	136
MG	(MG/L)	42	28	55	6	38	50
NA	(MG/L)	95	41	142	17	83	108
K	(MG/L)	15.8	9.6	24.8	2.8	13.6	19.5
TAL	(MG/L HCO ₃	130	45	199	25	112	155
CL	(MG/L)	90	41	143	15	79	102
SO4	(MG/L)	387	252	589	75	342	508
F	(MG/L)	0.5	0.3	1.0	0.1	0.4	0.6
SI	(MG/L)	6.1	2.2	8.0	1.5	5.3	7.4
NOa	(MG/L N)	1.91	0.24	7.48	1.77	1.28	5.23
PO ₄	(MG/L P)	1.616	0.011	6.648	0.795	1.164	2.127

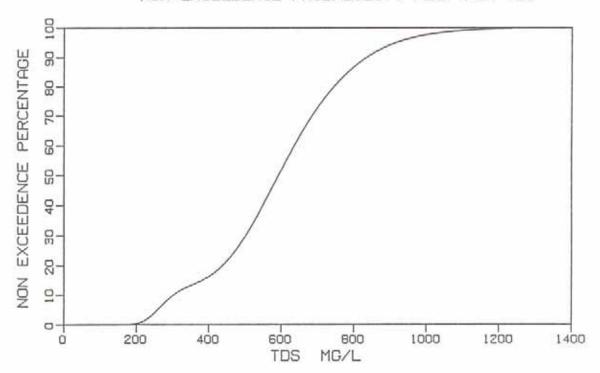
		PLOT FOR TDS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 6.6625	(σ ₁) 0.1367
2	(m ₂) 6.8155	(o ₂) 0.1072
PROPORTI	ONALITY FACTOR (¤) = .2048

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VAAL RIVER AT BALKFONTEIN

LATITUDE: 27°23'45" S LONGITUDE 26°30'30" E


TYPE: GAUGE PLATES IN POOL

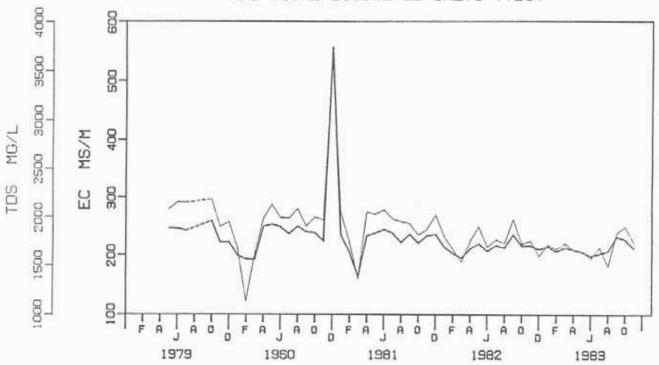

	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	74/01/21	TO 85/02	2/19
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	2355	1059	544	515	1.06

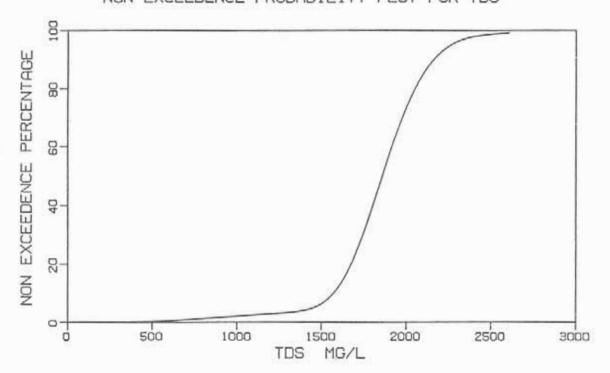
)	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.8	0.5	8.5	0.5	7.6	8.2
EC	(MS/M)	88.5	21.1	140.0	26.5	74.0	123.7
TDS	(MG/L)	596	129	981	188	485	862
CA	(MG/L)	62	16	119	20	49	90
MG	(MG/L)	42	7	59	13	31	53
NA	(MG/L)	56	1.1	117	26	39	100
K	(MG/L)	7.9	2.8	18.8	3.1	5.0	12.0
TAL	(MG/L HCO ₃	124	6	257	29	108	172
CL	(MG/L)	53	1 1	183	23	34	88
SO ₄	(MG/L)	239	9	487	107	167	375
F	(MG/L)	0.5	0.2	1.2	0.2	0.4	0.8
SI	(MG/L)	1.2	<0.4	8.2	1.9	0.6	5.2
NOa	(MG/L N)	0.03	<0.02	53.43	1.77	0.02	0.44
PO ₄	(MG/L P)	0.042	<0.005	1.020	0.081	0.022	0.159

	' PLOT FOR TDS ION PARAMETERS
MEAN	STD DEV
(m _i) 5.6014	(o _i) 0.1567
(µ ₂) 6.4301	(o ₂) 0.2470
	MAL DISTRIBUT MEAN (M1) 5.6014

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: WONDERFONTEIN SPRUIT AT LUIPAARDSVLEI


LATITUDE: 26°13'30" S LONGITUDE 27°44'30" E

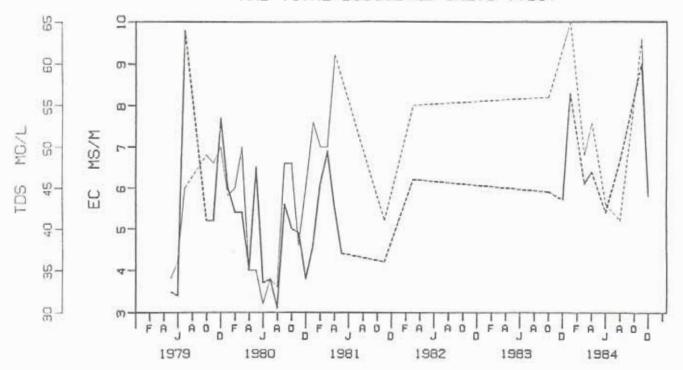

	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	79/05/09	9 TO 86/10	0/20
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	321	194	97	97	1.00

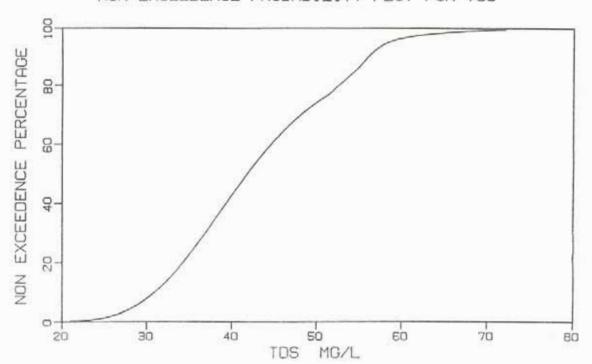
		WATER	QUALITY	STAT	ISTICS		
DET	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTIL	90 E PERCENTIL
PH	(PH UNITS)	7.4	3.1	12.8	1.3	6.1	8.0
EC	(MS/M)	224.0	66.9	887.8	54.0	208.0	249.6
TDS	(MG/L)	1871	448	5243	368	1681	2121
CA	(MG/L)	370	24	1277	99	328	440
MG	(MG/L)	50	2	74	1 1	44	61
NA	(MG/L)	102	17	142	19	93	122
K	(MG/L)	13.2	2.6	44.9	4.7	10.3	17.8
TAL	(MG/L HCO ₃) 60	<4	2299	207	19	202
CL	(MG/L)	68	<3	154	20	54	91
SO4	(MG/L)	1168	301	1617	218	959	1391
F	(MG/L)	0.5	0.2	1.1	0.2	0.4	0.7
SI	(MG/L)	3.1	<0.4	13.5	1.5	2.5	4.6
NOa	(MG/L N)	5.86	0.02	77.16	8.98	1.05	18.24
PO ₄	(MG/L P)	0.011	<0.005	0.131	0.020	0.007	0.033

AL DISTRIBUTION	LOT FOR TDS I PARAMETERS
MEAN	STD DEV
(µ ₁) 7.1869	(ơ,) 0.5737
(µ ₂) 7.5316	(σ ₂) 0.1118
	MEAN (M1) 7.1869

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: MIDDELVLEI SPRUIT AT MIDDELVLEI


LATITUDE: 26°14'00" S LONGITUDE 27°40'00" E


	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	79/05/02	TO 86/08	3/11
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	107	79	44	35	1.26

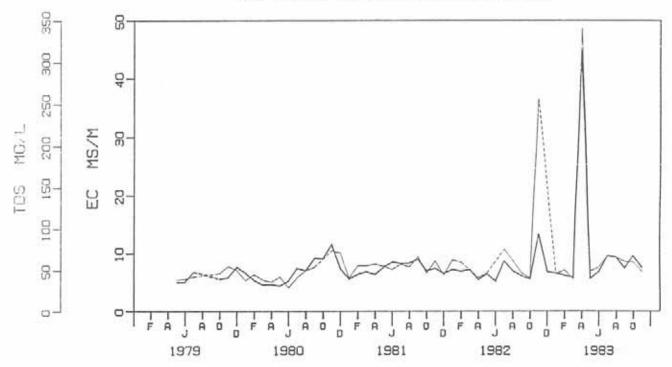
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.0	4.0	7.9	0.6	5.8	6.7
EC	(MS/M)	4.2	2.7	14.8	2.2	3.7	6.9
TDS	(MG/L)	43	25	62	10	35	56
CA	(MG/L)	3	1	12	2	2	6
MG	(MG/L)	2	< 1	3	1	1	2
NA	(MG/L)	3	<2.	5	1	2	4
K	(MG/L)	0.5	<0.3	4.8	0.7	0.4	1.2
TAL	(MG/L HCO _a	21	7	37	6	16	29
CL	(MG/L)	<3	<3	7	2	<3	4
SO ₄	(MG/L)	6	<2	20	5	4	15
F	(MG/L)	0.1	<0.1	0.7	0.1	0.1	0.2
SI	(MG/L)	4.1	2.4	6.0	0.9	3.4	5.1
NOa	(MG/L N)	0.05	<0.02	0.81	0.14	0.02	0.23
PO ₄	(MG/L P)	0.008	<0.005	0.110	0.019 <	0.005	0.031

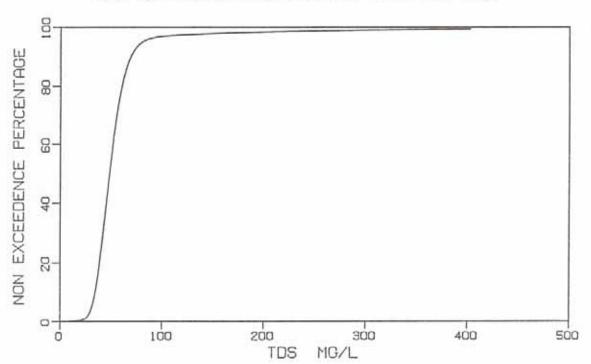
MIXED LOG-NOF	RMAL DISTRIB	BUTION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 3.702	23 (0,) 0.2223
2	(m ₂) 4.012	29 (0,) 0.0318

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC) AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C2M28

NAME: RIETFONTEIN SPRUIT AT RIETFONTEIN


LATITUDE: 26°14'45" S LONGITUDE 27°35'30" E


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	79/05/03	3 TO 86/10	0/20
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	245	200	90	110	0.82

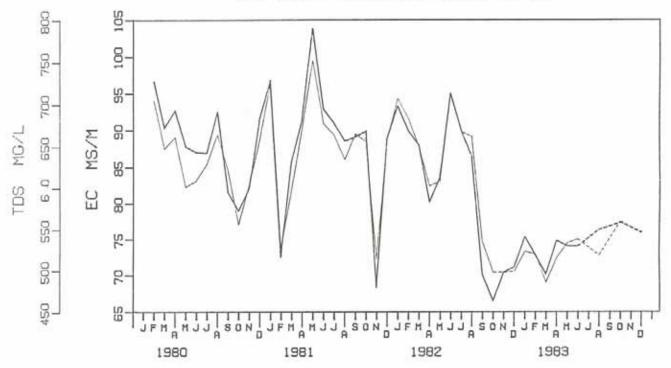
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.5	4.7	8.5	0.6	5.9	7.0
EC	(MS/M)	6.7	3.7	196.8	13.8	5.5	9.7
TDS	(MG/L)	50	23	1507	123	42	68
CA	(MG/L)	4	< 1	264	19	3	5
MG	(MG/L)	3	< 1	43	3	2	3
NA	(MG/L)	4	<2	116	9	3	6
K	(MG/L)	0.7	<0.3	18.8	1.5	0.4	1.5
TAL	(MG/L HCO _a	22	<4	235	20	18	32
CL	(MG/L)	4	<3	92	8	<3	8
SO_A	(MG/L)	8	<2	782	61	4	18
F	(MG/L)	0.1	<0.1	0.6	0.1	<0.1	0.3
SI	(MG/L)	3.7	<0.4	6.9	0.8	3.3	4.4
NOa	(MG/L N)	0.06	<0.02	5.47	0.44	0.02	0.26
PO4	(MG/L P)	0.013	<0.005	9.652	1.452	0.007	0.033

		Y PLOT FOR TDS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(u ₁) 4.6064	(σ _i) 1.1077
2	(u ₂) 3.8742	(d _a) 0.2425

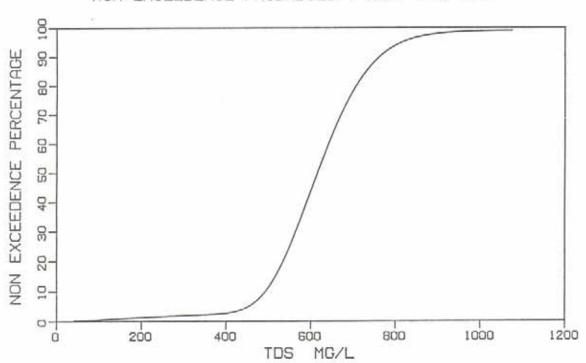
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C2M32

NAME: MODIRIVIERLOOP (RIVER) AT WONDERFONTEIN


LATITUDE: 26°19'00" S LONGITUDE 27°23'30" E

	SAM	IPLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	80/02/04	TO 86/09	9/24
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	157	137	70	67	1.04

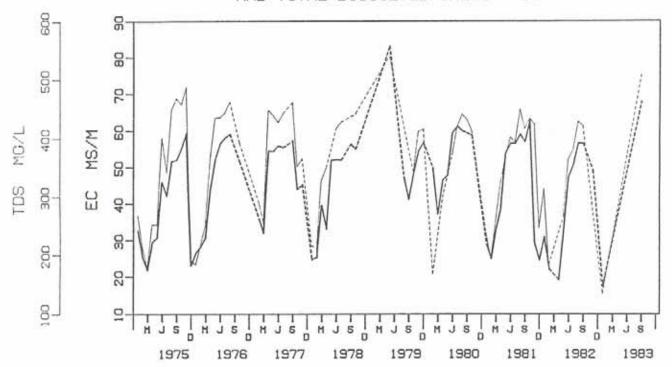

	Į	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.3	2.2	8.4	0.7	7.0	7.9
EC	(MS/M)	86.0	5.0	123.6	15.6	74.0	104.0
TDS	(MG/L)	632	32	983	119	550	775
CA	(MG/L)	86	2	177	28	62	116
MG	(MG/L)	37	2	45	4	35	39
NA	(MG/L)	45	<2	61	6	43	54
K	(MG/L)	3.6	<0.3	45.8	4.0	3.0	5.4
TAL	(MG/L HCO ₃)	134	12	469	53	115	159
CL	(MG/L)	23	<3	46	6	20	31
SO ₄	(MG/L)	279	13	571	94	209	387
F	(MG/L)	0.4	0.1	0.7	0.1	0.3	0.5
SI	(MG/L)	7.1	<0.4	15.2	1.3	6.6	7.8
NO ₃	(MG/L N)	2.38	<0.02	39.60	3.98	1.60	4.27
PO4	(MG/L P)	0.020	<0.005	2.816	0.252	0.009	0.115

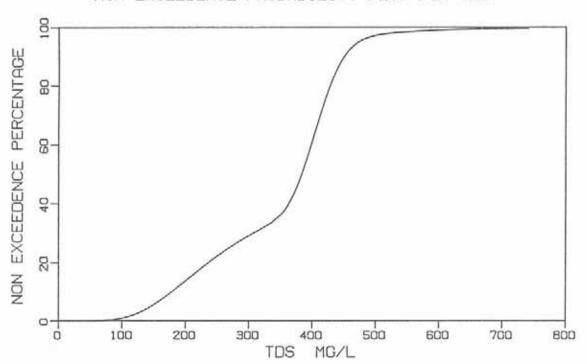
	ICE PROBABILITY RMAL DISTRIBUT	PLOT FOR TDS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 6.0431	(o ₁) 1.1269
2	(H ₂) 6.4255	(o ₂) 0.1562

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C2M65

NAME: LEEUDORING SPRUIT AT KLIPSPRUIT


LATITUDE: 27°22'15" S LONGITUDE 26°21'00" E


SAMPLING INFORMATION					
TOTAL	PERIOD OF	SAMPLING:	72/02/23	TO 86/02	2/10
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	330	120	46	74	0.62

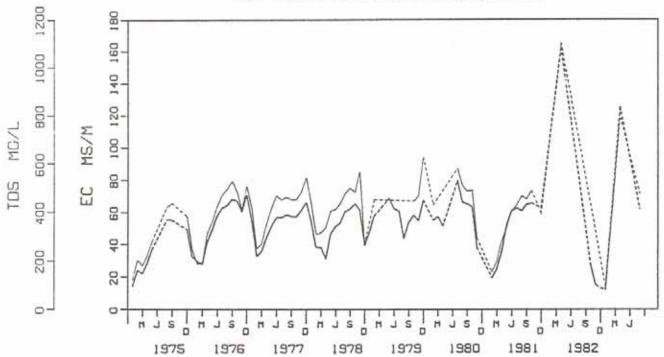
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	4.5	9.6	0.7	7.2	8.3
EC	(MS/M)	53.4	12.6	86.2	15.2	38.3	62.1
TDS	(MG/L)	399	122	582	92	339	454
CA	(MG/L)	37	8	56	10	27	41
MG	(MG/L)	22	3	28	7	13	26
NA	(MG/L)	42	8	73	16	24	54
K	(MG/L)	2.6	1.4	9.1	1.2	2.2	3.8
TAL	(MG/L HCO _s	232	42	298	67	164	264
CL	(MG/L)	27	4	76	15	19	48
SO4	(MG/L)	12	2	166	25	9	33
F	(MG/L)	0.4	0.1	0.9	0.1	0.3	0.5
SI	(MG/L)	3.8	0.6	10.1	2.7	2.4	8.8
NO3	(MG/L N)	0.33	<0.02	11.55	1.28	0.08	1.20
PO ₄	(MG/L P)	0.025	<0.005	5.937	0.636	0.010	0.091

	CE PROBABILITY F RMAL DISTRIBUTIO	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.5107	(o,) 0.4393
2	(m ₂) 6.0089	(o ₂) 0.0825

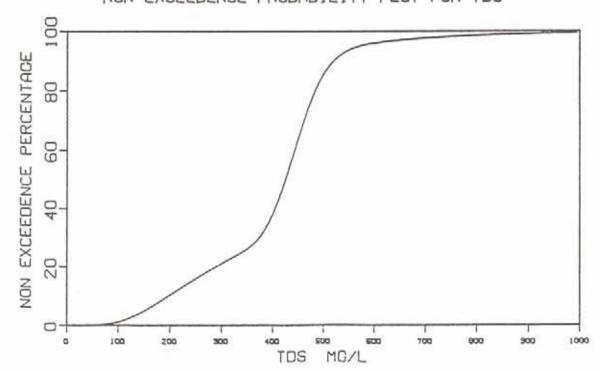
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C2M66

NAME: MAKWASSIE SPRUIT AT VLIEGEKRAAL


LATITUDE: 27°29'30" S LONGITUDE 26°04'30" E

SAMPLING INFORMATION					
TOTAL PERIOD OF SAMPLING: 72/08/02 TO 86/02/17					2/17
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	302	82	32	50	0.64

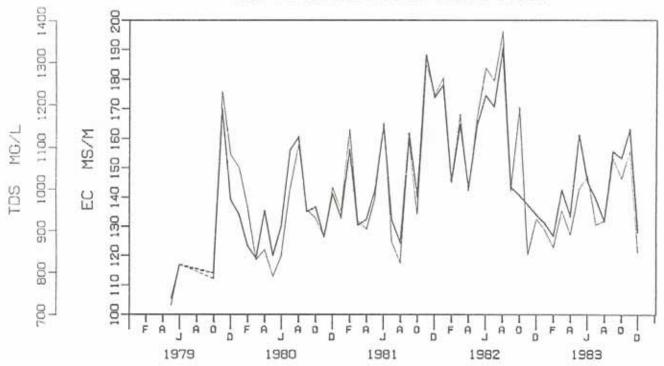

	I	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.4	6.4	8.5	0.6	7.1	8.4
EC	(MS/M)	59.3	12.0	162.0	22.2	48.8	67.4
TDS	(MG/L)	451	86	1099	165	382	523
CA	(MG/L)	37	9	148	19	31	46
MG	(MG/L)	21	4	35	7	17	26
NA	(MG/L)	55	8	133	26	40	77
K	(MG/L)	4.1	2.8	15.8	2.2	3.6	6.4
TAL	(MG/L HCO3)	254	31	328	87	138	303
CL	(MG/L)	34	5	214	31	24	52
SO ₄	(MG/L)	18	2	518	88	12	59
F	(MG/L)	0.5	0.3	0.8	0.1	0.4	0.7
SI	(MG/L)	3.9	<0.4	10.2	3.0	0.7	7.7
NO3	(MG/L N)	0.16	<0.02	11.42	1.53	0.06	0.91
PO ₄	(MG/L P)	0.012	<0.005	0.877	0.121	0.006	0.056

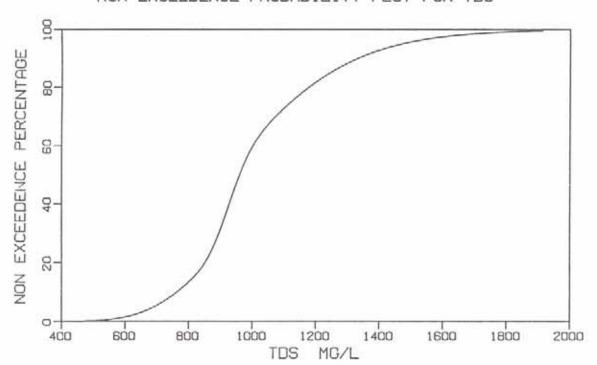
	CE PROBABILITY RMAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ _i) 5.6625	(o _i) 0.5609
2	(m ₂) 6.0983	(o ₂) 0.1039
PROPORTI	ONALITY FACTOR (@)	= .4001

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C2M69

NAME: MODIRIVIERLOOP (RIVER) AT BLAAUWBANK


LATITUDE: 26°22'30" S LONGITUDE 27°13'45" E


	SAM	PLING INFO	ORMATION	I	
TOTAL	PERIOD OF	SAMPLING:	79/05/03	TO 86/10	0/20
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	391	232	118	114	1.04

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.9	3.0	7.9	0.7	6.5	7.5
EC	(MS/M)	139.9	44.8	275.2	27.6	128.0	182.7
TDS	(MG/L)	964	302	1611	206	876	1283
CA	(MG/L)	120	47	255	35	102	176
MG	(MG/L)	40	15	71	7	36	48
NA	(MG/L)	117	20	222	29	103	157
K	(MG/L)	10.7	0.4	24.9	3.7	9.2	16.6
TAL	(MG/L HCO ₃) 50	<4	148	27	30	85
CL	(MG/L)	98	1 1	568	56	83	171
SO4	(MG/L)	475	137	966	125	411	667
F	(MG/L)	0.4	0.2	0.8	0.1	0.4	0.6
SI	(MG/L)	6.3	1.0	14.2	1.3	5.6	7.8
NO _a	(MG/L N)	9.75	0.36	73.61	8.23	6.94	16.97
PO ₄	(MG/L P)	0.216	<0.005	1.556	0.274	0.097	0.677

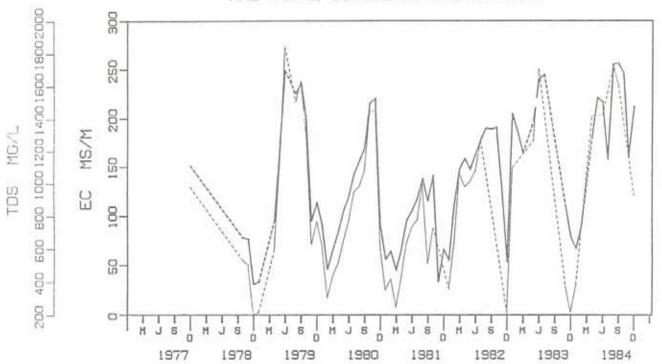
	CE PROBABILITY RMAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 6.9179	(σ _i) 0.2518
2	(µ ₂) 6.8340	(σ ₂) 0.0557
PROPORTI	ONALITY FACTOR (a)	= .7393

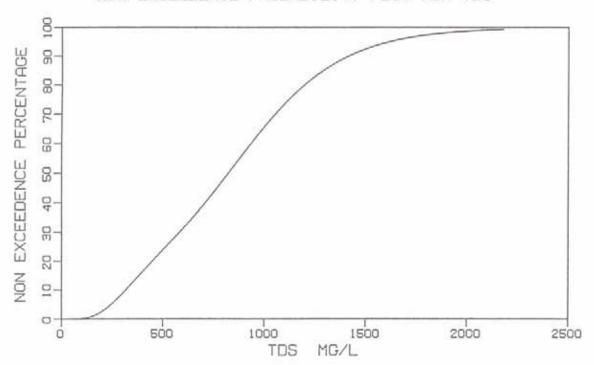
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C2M70

NAME: SUIKERBOSCHRAND RIVER AT PLATKOPPIE

LATITUDE: 26°38'30" S LONGITUDE 28°13'45" E


TYPE: RIVER SECTION


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	77/12/21	. TO 85/0°	7/08
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	296	178	88	90	0.98

	1	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.2	5.4	8.4	0.5	6.9	7.9
EC	(MS/M)	120.9	23.8	280.0	61.4	78.0	215.9
TDS	(MG/L)	733	192	1877	431	469	1451
CA	(MG/L)	59	18	126	27	42	97
MG	(MG/L)	34	5	79	17	21	62
NA	(MG/L)	122	22	382	92	67	282
K	(MG/L)	9.5	3.6	22.6	5.1	6.8	19.0
TAL	(MG/L HCO,	130	35	247	52	103	224
CL	(MG/L)	136	22	416	102	73	299
SOA	(MG/L)	236	27	638	146	141	446
F	(MG/L)	0.4	0.2	0.6	0.1	0.3	0.5
SI	(MG/L)	2.3	<0.4	7.6	1.9	0.9	5.4
NO _a	(MG/L N)	0.33	<0.02	3.21	0.63	0.16	1.60
PO ₄	(MG/L P)	0.020	<0.005	2.596	0.264	800.0	0.073

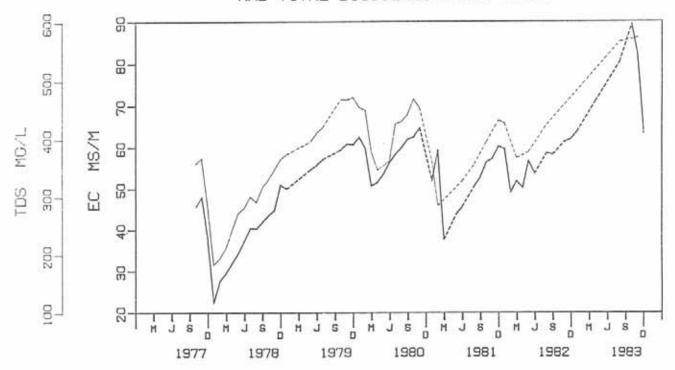
	CE PROBABILITY MAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV.
1	(µ ₁) 6.2240	(σ _i) 0.5780
2	(µ ₂) 6.9449	(σ_z) 0.3098
PROPORTI	ONALITY FACTOR (¢)	= .4763

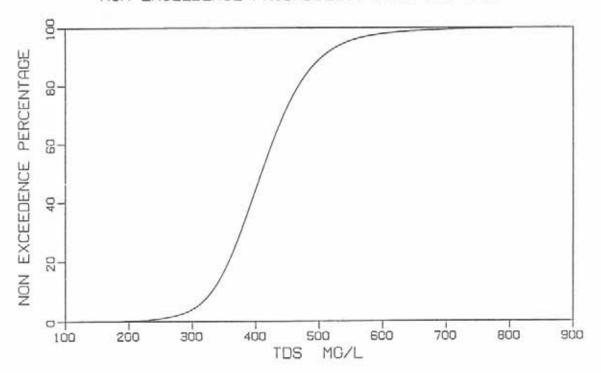
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C2R0501

NAME: KLIPDRIF DAM: NEAR DAM WALL

LATITUDE: 26°37'00" S LONGITUDE 27°18'00" E


TYPE: SAMPLING POINT IN BASIN


	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	77/10/22	2 TO 84/03	3/26
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	75	45	25	20	1.25

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	6.1	8.0	0.4	7.4	7.8
EC	(MS/M)	58.4	37.6	89.3	9.3	52.7	64.2
TDS	(MG/L)	424	284	573	62	370	469
CA	(MG/L)	31	24	38	3	29	34
MG	(MG/L)	26	17	36	4	24	31
NA	(MG/L)	48	32	81	10	43	56
K	(MG/L)	5.8	4.6	8.6	0.9	5.3	7.1
TAL	(MG/L HCO _a	209	137	254	27	182	231
CL	(MG/L)	37	26	67	10	34	55
SO ₄	(MG/L)	57	33	97	13	51	69
F	(MG/L)	0.4	0.2	0.6	0.1	0.4	0.5
SI	(MG/L)	0.9	<0.4	4.1	1.2	0.6	3.1
NO3	(MG/L N)	0.21	<0.02	0.86	0.25	0.04	0.57
PO ₄	(MG/L P)	0.006	<0.005	0.047	0.012 <	0.005	0.027

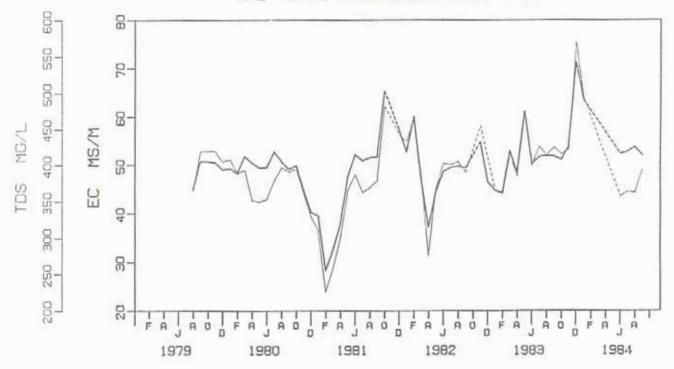
1EAN	1274.51	
ILAN	ST	D DEV
6.0055	(o ₁)	0.2936
6.0140	(σ_2)	0.1411
	6.0055 6.0140	# 1947 (A.T.) (A.T.) (B.T.)

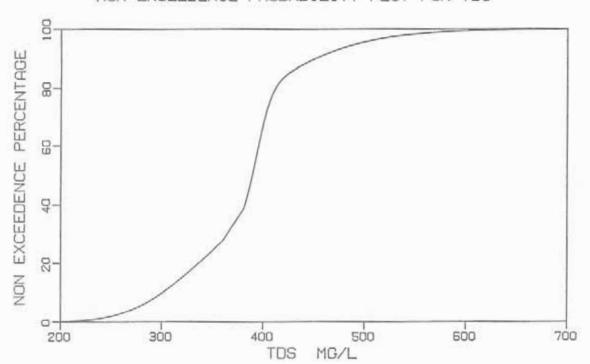
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: CZQO1

NAME: SKOON SPRUIT AT KLERKSDORP WEIR

LATITUDE: 26°52'30" S LONGITUDE 26°39'30" E


TYPE: SAMPLING POINT


	SAM	IPLING INFO	DRMATION		
TOTAL	PERIOD OF	SAMPLING:	79/08/20	TO 84/09	9/17
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	248	216	106	110	0.96

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.9	5.7	8.7	0.5	7.6	8.4
EC	(MS/M)	49.3	21.6	98.0	9.3	47.1	55.0
TDS	(MG/L)	392	155	755	72	366	430
CA	(MG/L)	40	18	92	9	38	47
MG	(MG/L)	36	1 1	57	7	32	40
NA	(MG/L)	9	6	50	7	8	16
K	(MG/L)	2.2	1.0	8.3	1.0	1.9	3.8
TAL	(MG/L HCO3	275	58	325	42	248	302
CL	(MG/L)	8	<3	56	8	7	18
SOA	(MG/L)	10	<2	331	41	5	40
F	(MG/L)	0.2	<0.1	0.9	0.1	0.2	0.3
SI	(MG/L)	4.5	0.5	9.1	2.0	3.3	7.5
NO ₃	(MG/L N)	0.06	<0.02	2,98	0.48	0.02	0.61
PO ₄	(MG/L P)	0.019	<0.005	1.396	0.125	0.009	0.140

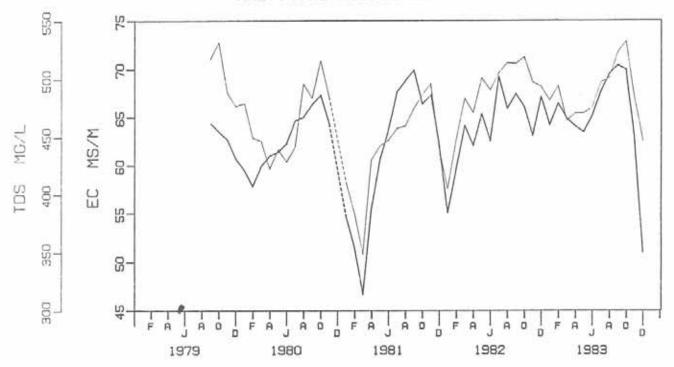
MIXED LOG-NOF	RMAL DISTRIBUT:	ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.9093	(σ _i) 0.2074
2	(u ₂) 5.9768	(0, 0.0283

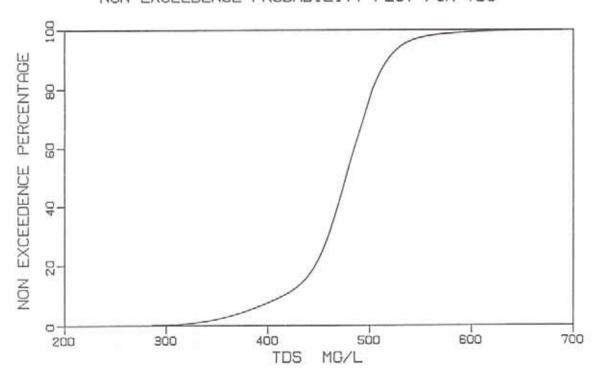
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C2QO2

NAME: MOOI RIVER AT BRIDGE ON TAAIBOSCHBULT

LATITUDE: 26°52'00" S LONGITUDE 27°01'30" E


TYPE: SAMPLING POINT


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	79/09/28	TO 84/1	1/13
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	313	205	107	98	1.09

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTIL
PH	(PH UNITS)	7.8	6.5	8.8	0.4	7.5	8.3
EC	(MS/M)	64.0	39.4	84.0	5.9	61.2	69.1
TDS	(MG/L)	478	294	636	45	453	518
CA	(MG/L)	52	28	72	6	48	56
MG	(MG/L)	40	21	46	4	37	42
NA	(MG/L)	23	16	67	5	21	28
K	(MG/L)	3.3	1.5	19.7	1.5	2.9	4.9
TAL	(MG/L HCO ₃	236	96	292	24	226	260
CL	(MG/L)	24	10	70	8	19	32
SO4	(MG/L)	85	8	167	16	78	96
F	(MG/L)	0.3	<0.1	4.0	0.5	0.2	0.9
SI	(MG/L)	6.2	3.3	9.0	1.1	5.3	7.5
NO ₃	(MG/L N)	1.08	0.02	31.20	2.52	0.81	2.12
PO ₄	(MG/L P)	0.498	<0.005	6.095	0.669	3.386	1.169

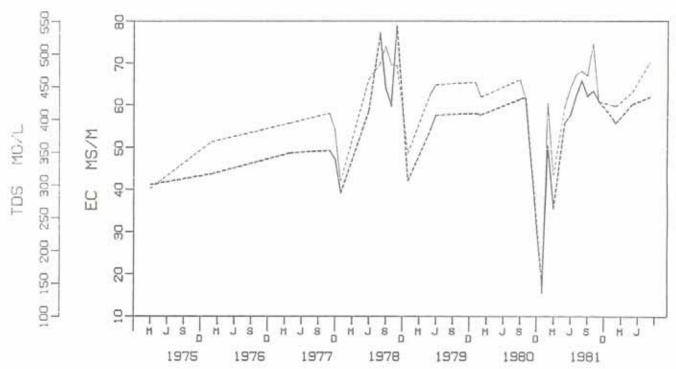
	CE PROBABILITY RMAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m,) 6.0843	(a,) 0.1612
2	(m ₂) 6.1765	(o ₂) 0.0520
PROPORTI	ONALITY FACTOR (∝)	= .2684

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

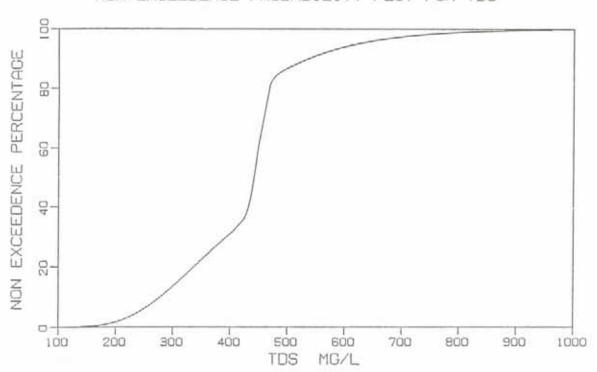
STATION NUMBER: C2R0101

NAME: BOSKOP DAM: NEAR DAM WALL

LATITUDE: 26°33'45" S LONGITUDE 27°06'30" E


TYPE: SAMPLING POINT IN DAM BASIN

	SAM	PLING INFO	ORMAT I ON	V	
TOTAL	PERIOD OF	SAMPLING:	68/06/28	3 TO 86/10	0/09
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	107	21	1 1	10	1.10


		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.7	6.3	8.1	0.5	7.2	8.0
EC	(MS/M)	57.6	17.1	65.8	11.2	55.6	62.2
TDS	(MG/L)	438	135	516	79	422	474
CA	(MG/L)	49	13	60	10	44	57
MG	(MG/L)	37	7	39	7	35	38
NA	(MG/L)	19	5	23	4	16	21
K	(MG/L)	1.9	1.1	5.5	0.9	1.8	2.7
TAL	(MG/L HCO,) 227	82	275	38	213	249
CL	(MG/L)	17	4	31	6	15	21
SO ₄	(MG/L)	85	2	103	29	74	96
F	(MG/L)	0.1	<0.1	0.6	0.1	0.1	0.2
SI	(MG/L)	6.1	4.9	8.7	1.0	5.7	7.7
FON	(MG/L N)	0.51	<0.02	1.15	0.37	0.29	1.07
PO ₄	(MG/L P)	0.006	<0.005	0.049	0.012	<0.005	0.026

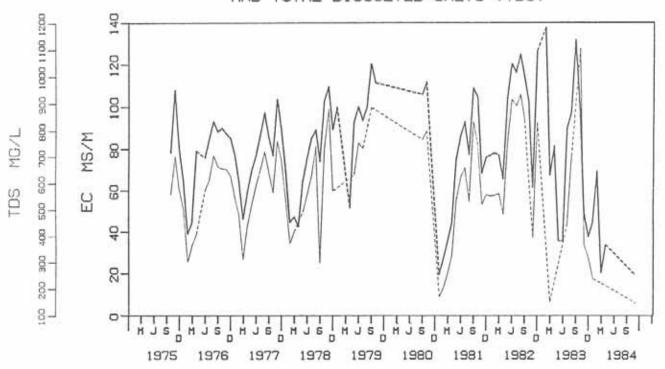
MIXED LOG-NOR	MAL DISTRIBUT	ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.9549	(o ₁) 0.3500
2	(A,) 6.1064	(0,) 0.0283

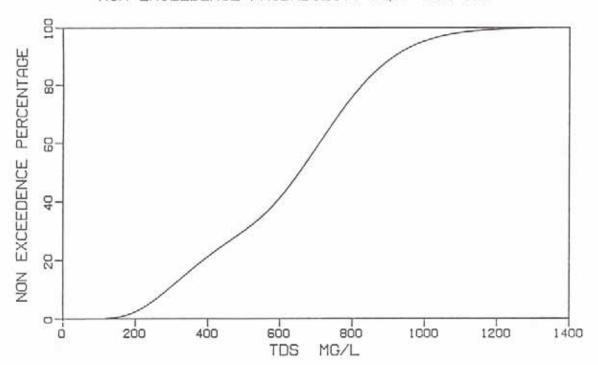
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C3MO3

NAME: HARTS RIVER AT TAUNG

LATITUDE: 27°34'30" S LONGITUDE 24°44'45" E


TYPE: STORAGE WEIR


	SAM	1PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	71/08/05	TO 86/02	2/18
	TOTAL	.1979-1983	SUMMER	WINTER	RATIO
SAMPLES	355	137	58	79	0.73

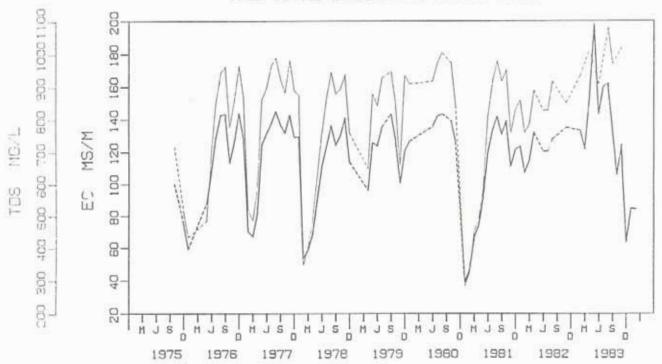
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.8	6.2	8.5	0.5	7.3	8.2
EC	(MS/M)	89.9	18.6	150.0	32.0	62.0	125.0
TDS	(MG/L)	657	154	1105	229	418	894
CA	(MG/L)	44	15	64	1 1	34	51
MG	(MG/L)	36	6	53	13	24	49
NA	(MG/L)	98	10	249	47	49	147
K	(MG/L)	5.9	1.5	9.5	1.7	4.3	7.4
TAL	(MG/L HCO ₃	226	87	361	62	175	300
CL	(MG/L)	69	6	148	32	37	103
SO ₄	(MG/L)	155	6	296	83	82	258
F	(MG/L)	0.7	0.1	1.1	0.2	0.5	0.9
SI	(MG/L)	6.6	<0.4	11.4	2.7	5.5	9.8
NO ₃	(MG/L N)	0.06	<0.02	2.54	0.35	0.02	0.51
PO ₄	(MG/L P)	0.009	<0.005	0.455	0.049 <	0.005	0.051

EAN	STD DEV
5.9443 (d	r,) 0.4181
6.6191 (d	r _z) 0.1949

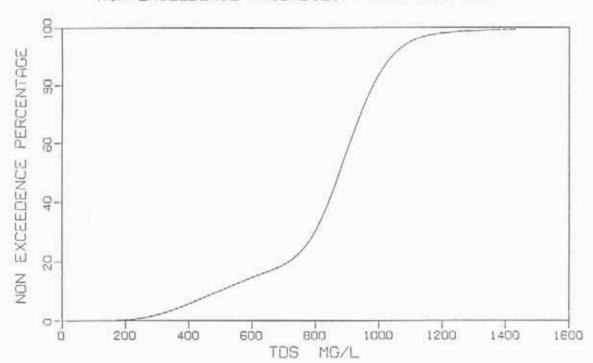
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C3MO7

NAME: HARTS RIVER AT ESPAGSDRIF


LATITUDE: 27°54'15" S LONGITUDE 24°37'00" E

	SAM	IPLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	67/12/11	TO 86/09	9/18
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	344	136	62	74	0.84

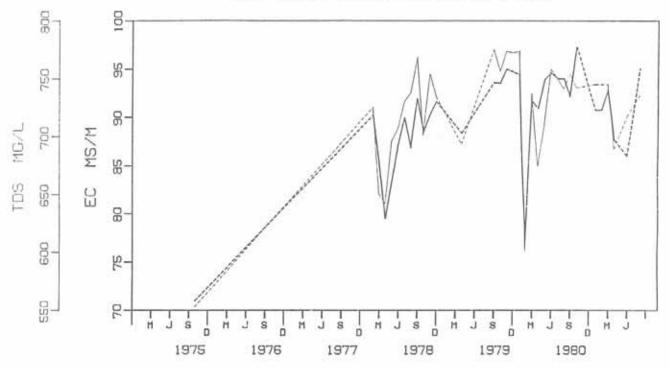

		WATER	QUALITY	STAT	ISTICS		
DETE	RMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.7	6.6	8.4	0.4	7.5	8.3
EC	(MS/M)	128.2	32.4	263.0	31.1	112.0	147.5
TDS	(MG/L)	884	283	1354	200	746	1004
CA	(MG/L)	70	29	92	14	63	79
MG	(MG/L)	59	15	78	15	48	71
NA	(MG/L)	111	24	155	28	94	133
K	(MG/L)	7.5	3.5	11.1	1.3	6.5	8.8
TAL	(MG/L HCO3	207	103	248	27	187	232
CL	(MG/L)	141	24	199	39	121	174
SOA	(MG/L)	257	33	414	81	205	329
F	(MG/L)	0.7	0.2	1.0	0.2	0.6	0.8
SI	(MG/L)	5.9	3.2	10.4	1.5	5.0	7.9
NO.	(MG/L N)	1.67	0.26 1	00.56	9.28	1.13	2.74
PO ₄	(MG/L P)	0.013	<0.005	0.494	0.064	0.006	0.040

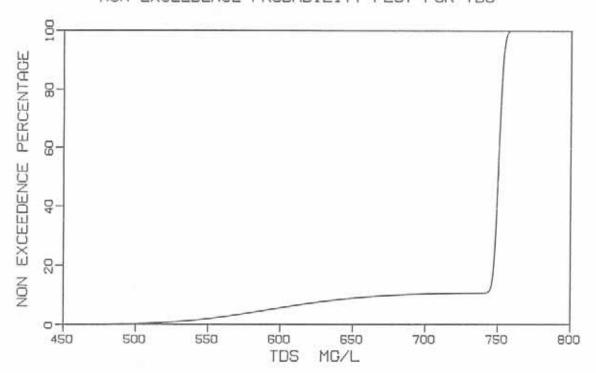
	CE PROBABILITY RMAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 6.3601	(ơ _i) 0.4537
2	(m ₂) 6.8085	(o ₂) 0.1095

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C3M10

NAME: THABASIKWA EYE AT BUXTON


LATITUDE: 27°36'30" S LONGITUDE 24°36'45" E


	SAM	PLING INFO	ORMAT I ON	N	
TOTAL	PERIOD OF	SAMPLING:	75/10/23	3 TO 81/0	3/10
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	108	67	33	34	0.97

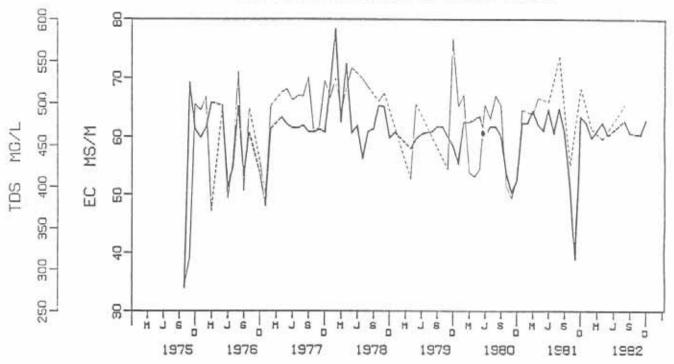
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DE	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	8.0	7.6	8.4	0.1	7.9	8.1
EC	(MS/M)	94.0	70.3	98.0	5.5	92.0	95.8
TDS	(MG/L)	746	537	780	52	734	774
CA	(MG/L)	57	39	61	6	52	59
MG	(MG/L)	85	60	91	6	82	89
NA	(MG/L)	20	2	28	5	19	27
K	(MG/L)	1.1	0.3	2.2	0.3	1.0	1.5
TAL	(MG/L HCO ₃	501	331	516	40	481	511
CL	(MG/L)	46	34	59	4	43	49
SO ₄	(MG/L)	31	22	37	3	28	34
F	(MG/L)	0.5	0.3	0.7	0.1	0.5	0.6
SI	(MG/L)	10.7	8.5	12.9	1.1	10.1	12.8
_E ON	(MG/L N)	0.40	0.04	1.08	0.27	0.23	0.89
PO ₄	(MG/L P)	0.005	<0.005	0.092	0.018 <	0.005	0.019

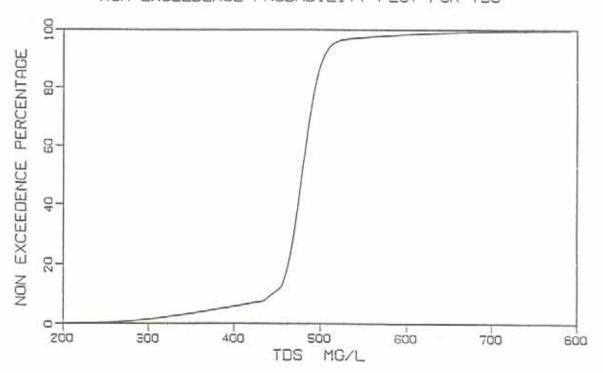
NON EXCEEDENG MIXED LOG-NOR				
COMPONENT DISTRIBUTION	MEAN		ST	D DEV
1	(m ₁) 6.3917	7	(a,)	0.0894
2	(m _z) 6.6208	3	(📭)	0.0034
PROPORTI	ONALITY FACTOR	(a) =	.1083	

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC) AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C3M12

NAME: VLAKFONTEIN EYE AT METSEMATSHWE RESERVE


LATITUDE: 27°39'45" S LONGITUDE 24°05'15" E


	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	72/03/19	5 TO 82/12	2/31
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	202	64	27	37	0.73

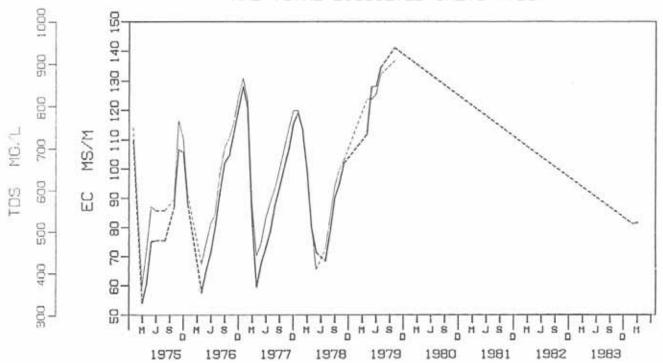
	Į	WATER	QUALITY	STAT	ISTICS		
DETE	RMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.8	7.0	8.0	0.2	7.6	8.0
EC	(MS/M)	60.8	38.8	64.8	4.0	59.9	62.8
TDS	(MG/L)	492	385	577	50	420	513
CA	(MG/L)	65	41	71	10.	53	71
MG	(MG/L)	40	37	43	1	39	42
NA	(MG/L)	4	3	5	1	3	4
K	(MG/L)	0.6	<0.3	1.1	0.2	0.5	0.9
TAL	(MG/L HCO a	325	255	373	31	290	348
CL	(MG/L)	12	10	35	5	11	17
SO_A	(MG/L)	6	2	61	11	4	13
F "	(MG/L)	0.1	<0.1	0.4	0.1	0.1	0.3
SI	(MG/L)	7.7	7.3	8.8	0.4	7.5	8.4
NO ₃	(MG/L N)	3.95	0.82	19.00	3.91	3.79	5.44
PO ₄	(MG/L P)	0.006	<0.005	0.069	0.015 <	0.005	0.018

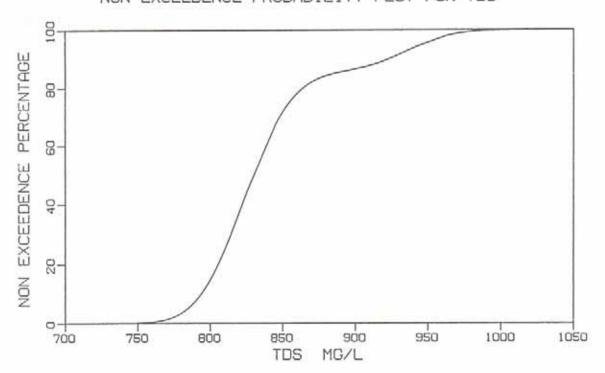
		Y PLOT FOR TDS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 6.0502	(o _i) 0.2782
2	(m ₂) 6.1734	(0,) 0.0316

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C3M13

NAME: HARTS RIVER AT MOUNT RUPERT


LATITUDE: 28°09'30" S LONGITUDE 24°28'30" E


	SAM	PLING INFO	ORMATION			
TOTAL	PERIOD OF	PERIOD OF SAMPLING:		71/08/05 TO 84/03/12		
	TOTAL	1975-1979	SUMMER	WINTER	RATIO	
SAMPLES	548	424	245	179	1.37	

		VATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTIL
PH	(PH UNITS)	7.9	7.0	8.9	0.3	7.7	8.3
EC	(MS/M)	98.2	45.8	141.6	18.8	80.7	119.7
TDS	(MG/L)	668	352	910	128	552	795
CA	(MG/L)	39	19	52	5	35	45
MG	(MG/L)	45	22	67	10	37	55
NA	(MG/L)	95	24	150	25	74	126
K	(MG/L)	6.8	4.1	24.3	1.1	6.4	7.7
TAL	(MG/L HCO ₃	234	165	311	31	209	267
CL	(MG/L)	122	28	210	37	90	165
SO4	(MG/L)	113	15	235	40	84	159
F	(MG/L)	0.4	0.1	1.3	0.2	0.4	0.7
SI	(MG/L)	1.1	<0.4	5.0	1.3	0.8	3.8
NO ₃	(MG/L N)	0.05	<0.02	1.50	0.18	0.02	0.26
PO ₄	(MG/L P)	0.018	<0.005	0.280	0.030	0.014	0.043

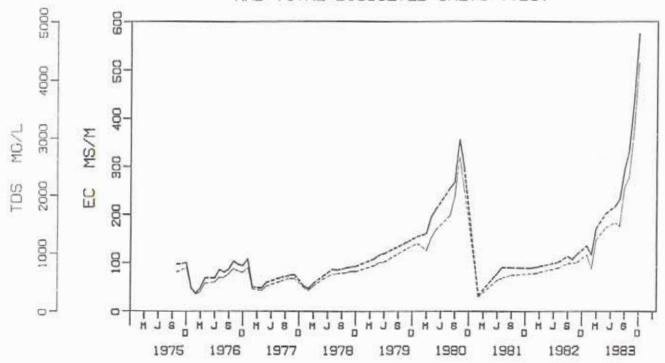
NON EXCEEDENC 11XED LOG-NORM						
COMPONENT MEAN DISTRIBUTION			ST	STD DEV		
1	(m ₁)	6.8412	(🗗)	0.0265		
2	(u ₂)	6.7145	(σ_z)	0.0316		
		FACTOR (a)				

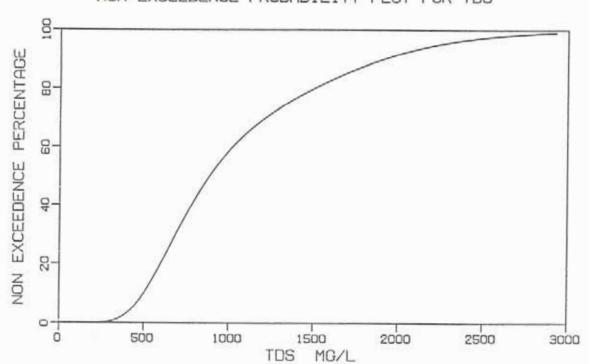
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C3R0101

NAME: SCHWEIZER RENEKE DAM: NEAR DAM WALL

LATITUDE: 27°10'30" S LONGITUDE 25°20'15" E


TYPE: SAMPLING POINT IN DAM BASIN


	SAM	IPLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	75/10/23	3 TO 86/10	0/07
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	87	35	18	17	1.06

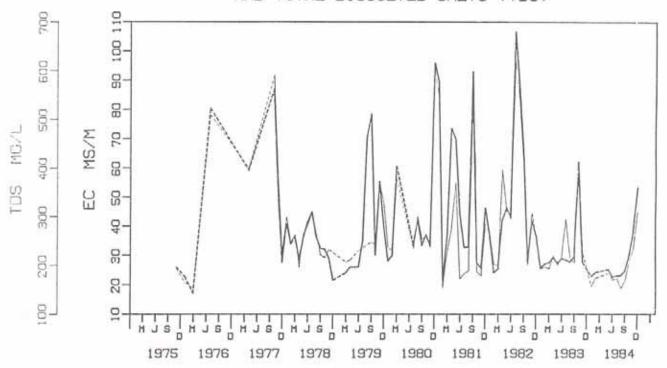
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTIL	90 E PERCENTIL
PH	(PH UNITS)	8.1	6.9	9.0	0.4	8.0	8.3
EC	(MS/M)	135.6	31.7	574.5	115.7	97.0	318.5
TDS	(MG/L)	1089	245	4297	871	768	2333
CA	(MG/L)	22	16	39	5	20	31
MG	(MG/L)	68	14	157	35	45	115
NA	(MG/L)	214	15	1088	234	135	597
K	(MG/L)	16.9	5.6	55.5	11.0	12.4	32.8
TAL	(MG/L HCO3	453	75	1646	305	347	864
CL	(MG/L)	208	13	1143	249	137	596
SOA	(MG/L)	51	4	774	183	29	168
F	(MG/L)	0.9	0.3	2.4	0.5	0.6	1.4
SI	(MG/L)	1.3	<0.4	9.7	1.8	0.7	3.0
NO ₃	(MG/L N)	0.73	<0.02	3.21	1.09	0.29	2.68
PO ₄	(MG/L P)	0.097	0.006	0.435	0.142	0.027	0.316

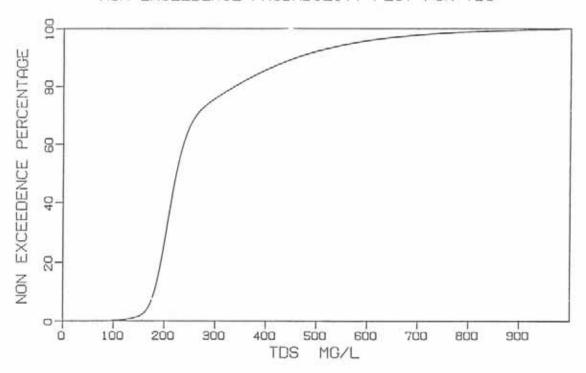
E PROBABILITY 1AL DISTRIBUTI	PLOT FOR TDS ON PARAMETERS
MEAN	STD DEV
(µ ₁) 7.4685	(o ₁) 0.2874
(µ ₂) 6.6327	(o ₂) 0.3747
	MEAN (M1) 7.4685

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C4MO4

NAME: VET RIVER AT NOOITGEDACHT


LATITUDE: 27°56'15" S LONGITUDE 26°07'30" E


	SAM	PLING INFO	ORMATION	V	
TOTAL	PERIOD OF	SAMPLING:	72/08/03	3 TO 86/10	0/03
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	405	204	101	103	0.98

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.5	5.9	8.4	0.5	7.2	8.0
EC	(MS/M)	30.7	12.1	173.3	26.7	27.3	79.3
TDS	(MG/L)	229	114	1032	143	200	487
CA	(MG/L)	22	8	103	14	20	44
MG	(MG/L)	10	4	53	7	8	23
NA	(MG/L)	25	6	162	25	21	69
K	(MG/L)	5.7	3.5	10.5	1.1	5.1	7.2
TAL	(MG/L HCO3	110	12	256	31	89	145
CL	(MG/L)	19	5	427	62	13	111
SO4	(MG/L)	21	3	304	42	14	89
F	(MG/L)	0.5	0.2	1.0	0.1	0.4	0.6
SI	(MG/L)	3.3	0.5	6.5	1.3	2.1	5.1
NO ₃	(MG/L N)	0.10	<0.02	1.78	0.23	0.03	0.44
PO ₄	(MG/L P)	0.052	0.005	0.398	0.062	0.029	0.121

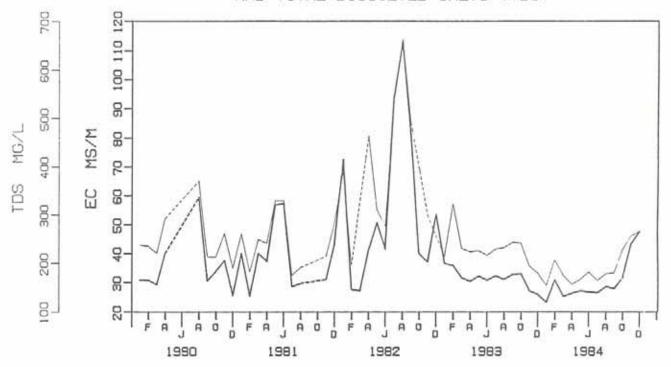
DISIKIDULIC	ON PARAMETERS
MEAN	STD DEV
μ ₁) 5.8245	(o ₁) 0.4530
μ ₂) 5.3421	(o ₂) 0.1208
	27. A 2 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

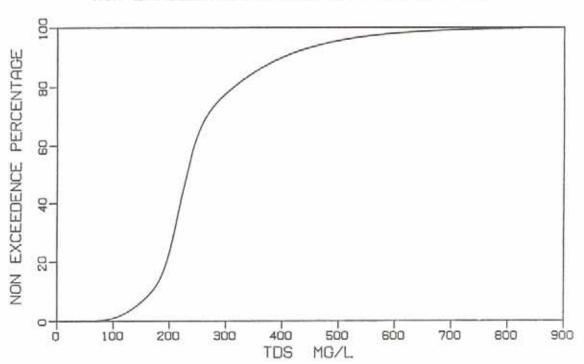
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C4Q01

NAME: VET RIVER AT HOOPSTAD

LATITUDE: 27°50'30" S LONGITUDE 25°54'00" E


TYPE: SAMPLING POINT


	SAM	IPLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	80/01/29	9 TO 85/03	3/11
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	536	333	184	149	1.23

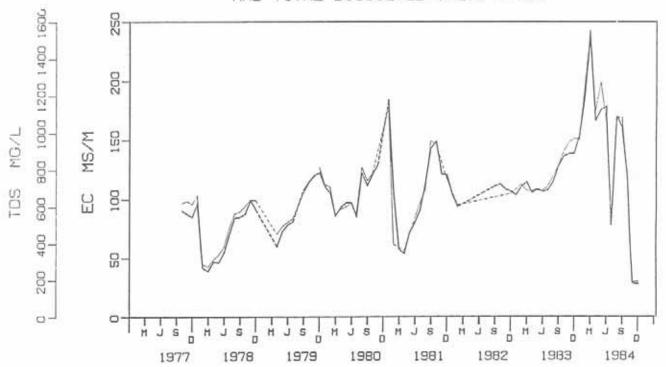
	ı	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	0.5	8.4	0.6	7.2	8.0
EC	(MS/M)	32.7	12.3	144.5	21.1	28.8	67.7
TDS	(MG/L)	237	85	833	118	204	398
CA	(MG/L)	24	7	87	13	20	44
MG	(MG/L)	10	4	43	5	9	17
NA	(MG/L)	26	8	137	20	22	55
K	(MG/L)	5.5	3.4	11.5	1.1	5.1	7.0
TAL	(MG/L HCO a	101	10	165	29	82	142
CL	(MG/L)	26	6	300	46	19	102
SOA	(MG/L)	21	<2	187	33	14	76
F	(MG/L)	0.5	0.1	0.8	0.1	0.4	0.6
SI	(MG/L)	3.3	<0.4	7.2	1.7	1.8	5.6
NO ₃	(MG/L N)	0.09	<0.02	0.90	0.19	0.05	0.45
PO ₄	(MG/L P)	0.057	<0.005	2.207	0.140	0.032	0.144

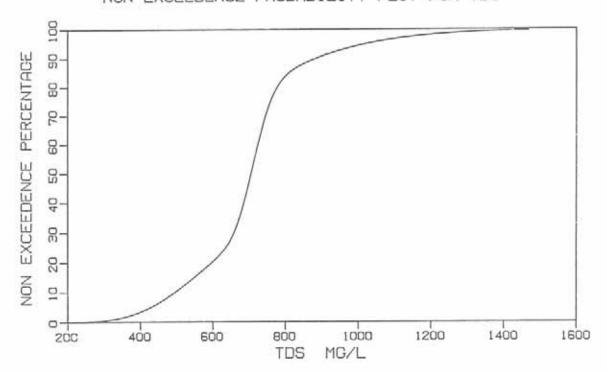
STD DEV
(o,) 0.4496
(o ₂) 0.1044

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

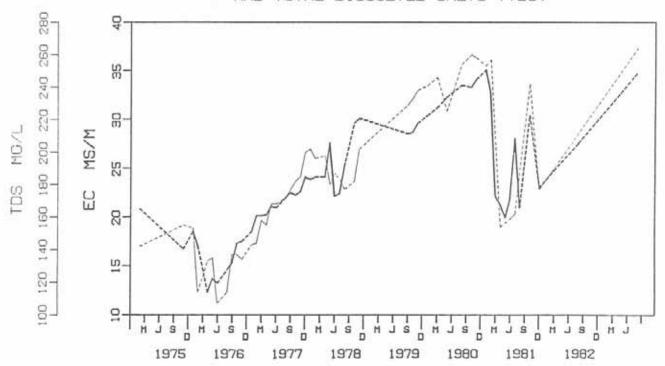
STATION NUMBER: C4R0101

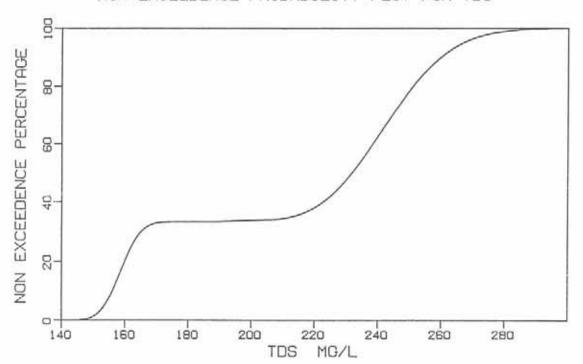
NAME: ALLEMANSKRAAL DAM: NEAR DAM WALL


LATITUDE: 28°17'15" S LONGITUDE 27°09'00" E


	SAM	IPLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	68/04/01	TO 86/0	7/14
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	110	25	13	12	1.08

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.1	6.6	8.2	0.4	7.0	7.7
EC	(MS/M)	30.1	19.9	35.1	4.9	24.8	34.1
TDS	(MG/L)	240	154	264	36	225	260
CA	(MG/L)	22	14	26	3	19	25
MG	(MG/L)	8	6	10	1	8	10
NA	(MG/L)	30	20	35	5	27	35
K	(MG/L)	4.5	4.1	7.6	1.0	4.3	5.7
TAL	(MG/L HCO3	148	81	166	27	130	162
CL	(MG/L)	9	7	14	2	9	13
SO4	(MG/L)	12	2	17	4	10	16
F	(MG/L)	0.5	0.4	0.8	0.1	0.5	0.7
SI	(MG/L)	3.6	1.9	5.5	0.9	2.8	4.5
NO _a	(MG/L N)	0.05	<0.02	1.77	0.41	0.02	0.34
PO4	(MG/L P)	0.012	<0,005	0.122	0.036	0.005	0.071

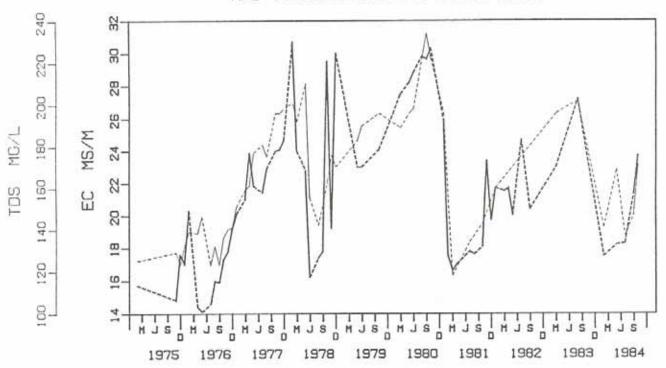

		PLOT FOR TDS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.4910	(σ _i) 0.0663
2	(m ₂) 5.0669	(o _z) 0.0316
PROPORT I	ONALITY FACTOR («	:) = .6663

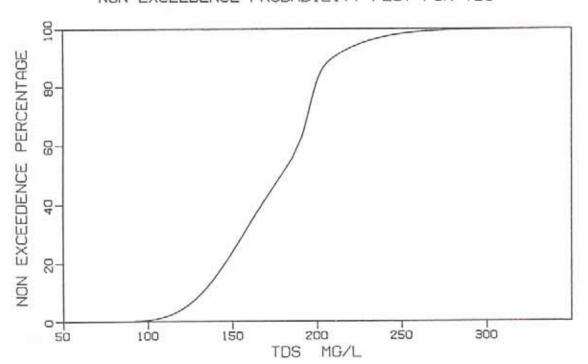

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC) AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C4R0201

NAME: ERFENIS DAM: NEAR DAM WALL


LATITUDE: 28"30'30" S LONGITUDE 26"46'45" E

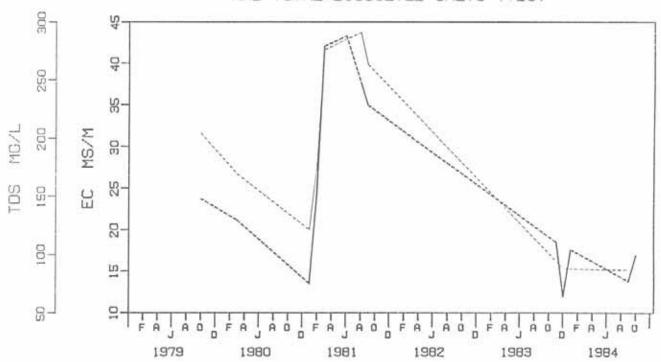

	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	68/04/0	TO 86/0	7/14
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	141	29	13	16	0.81

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.1	5.9	7.8	0.5	6.8	7.6
EC	(MS/M)	23.0	16.6	30.5	4.3	20.0	29.2
TDS	(MG/L)	196	118	234	31	185	223
CA	(MG/L)	19	12	24	3	16	23
MG	(MG/L)	8	5	10	1	7	10
NA	(MG/L)	18	12	25	4	16	23
K	(MG/L)	4.8	4.1	5.8	0.4	4.5	5.0
TAL	(MG/L HCO _a	115	59	148	24	100	140
CL	(MG/L)	7	6	18	2	7	10
SO ₄	(MG/L)	10	3	21	4	8	13
F	(MG/L)	0.4	0.2	0.8	0.1	0.4	0.5
SI	(MG/L)	4.6	1.0	6.1	1.2	3.5	5.8
NOa	(MG/L N)	0.06	<0.02	0.45	0.14	0.02	0.37
PO ₄	(MG/L P)	0.020	<0.005	0.225	0.048	0.012	0.079

1		PLOT FOR TDS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.1135	(0,) 0.2032
2	(m ₂) 5.2761	(ơ ₂) 0.0245
PROPORT I	ONALITY FACTOR («	1 = .7840

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: RIET RIVER AT RIVIERA


LATITUDE: 29°48'45" S LONGITUDE 26°12'45" E

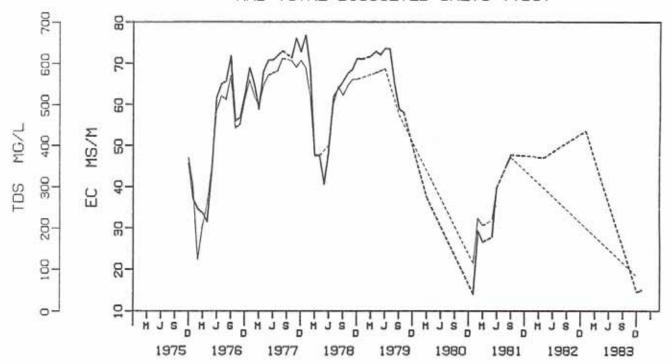

	SAM	PLING INFO	ORMAT I ON		
TOTAL	PERIOD OF	SAMPLING:	72/03/18	TO 85/12	2/10
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	19	13	9	4	2.25

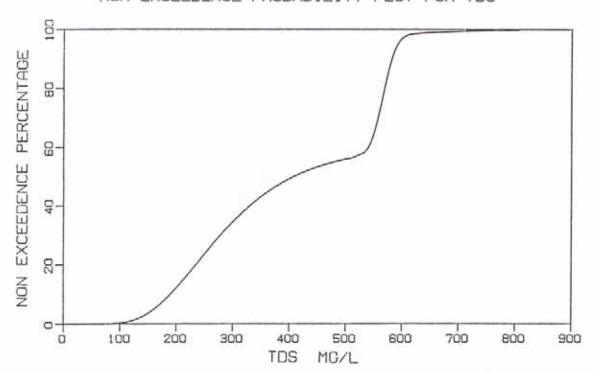
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.7	6.3	7.7	0.4	6.5	7.3
EC	(MS/M)	29.7	11.9	54.6	12.6	18.5	42.2
TDS	(MG/L)	219	88	333	76	150	291
CA	(MG/L)	21	10	30	6	17	26
MG	(MG/L)	10	4	13	3	6	12
NA	(MG/L)	23	<2	44	13	13	34
K	(MG/L)	4.2	2.9	6.3	1.1	3.6	5.7
TAL	(MG/L HCO ₃	115	38	180	43	86	159
CL	(MG/L)	12	3	41	11	10	28
SO ₄	(MG/L)	10	8	18	3	8	13
F	(MG/L)	0.4	0.1	1.1	0.3	0.3	0.5
SI	(MG/L)	5.1	4.3	7.3	1.0	4.8	7.3
NO3	(MG/L N)	0.12	0.03	9.36	2.76	0.07	1.03
PO ₄	(MG/L P)	0.168	0.073	1.632	0.448	0.131	0.246

	PLOT FOR TDS ON PARAMETERS
MEAN	STD DEV
(m ₁) 4.8253	(0,) 0.0616
(m ₂) 5.5184	(ơ₂) 0.3236
	AL DISTRIBUT: MEAN (سر) 4.8253

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: RIET RIVER AT RIETWATER


LATITUDE: 29"39'30" S LONGITUDE 25"58'30" E

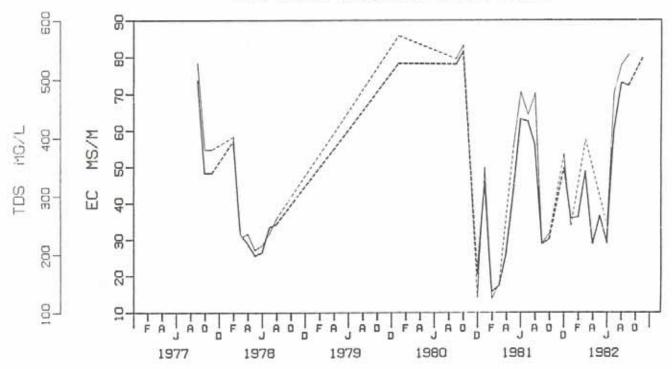

	SAM	IPLING INFO	DRMATION	1	
TOTAL	PERIOD OF	75/12/21	75/12/21 TO 84/01/04		
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	178	47	15	32	0.47

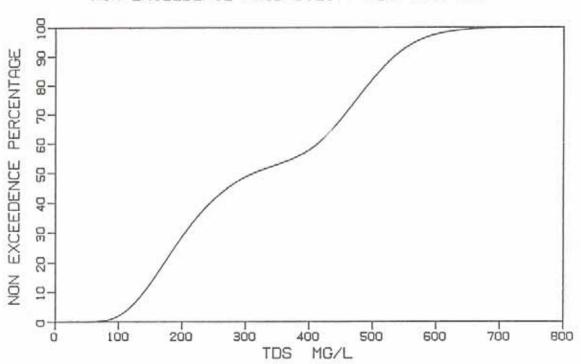
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.1	6.3	8.3	0.6	6.7	8.1
EC	(MS/M)	53.5	14.0	74.8	19.8	31.6	73.5
TDS	(MG/L)	249	83	587	157	212	579
CA	(MG/L)	27	10	40	9	22	38
MG	(MG/L)	12	5	33	9	10	32
NA	(MG/L)	24	8	93	29	20	92
K	(MG/L)	3.7	3.1	7.7	1.1	3.3	4.7
TAL	(MG/L HCO _a	154	26	345	96	124	340
CL	(MG/L)	16	7	50	14	12	49
SOA	(MG/L)	16	6	34	9	12	33
F	(MG/L)	0.5	0.2	1.0	0.2	0.4	1.0
SI	(MG/L)	5.4	1.5	6.7	2.0	3.0	6.7
NO ₃	(MG/L N)	0.06	<0.02	0.45	0.13	0.02	0.30
PO ₄	(MG/L P)	0.034	<0.005	0.338	0.083	0.012	0.123

	CE PROBABILITY F	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.6333	(o _i) 0.3982
2	(m _z) 6.3392	(σ_{z}) 0.0316
PROPORT I	ONALITY FACTOR (x) :	= .6050

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC) AND TOTAL DISSOLVED SALTS (TDS)

NAME: MODDER RIVER AT STOOMHOEK


LATITUDE: 28°48'30" S LONGITUDE 26°06'45" E

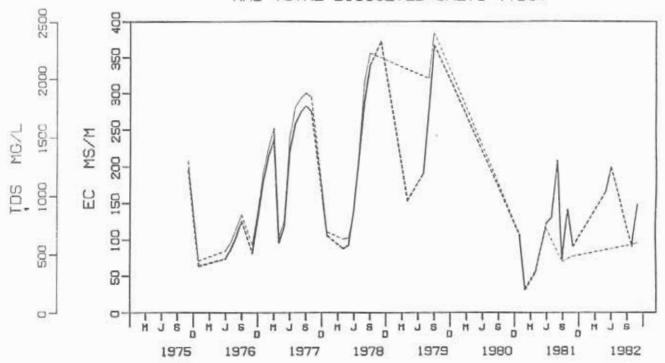

	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	67/01/22	TO 82/1	1/18
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	117	79	32	47	0.68

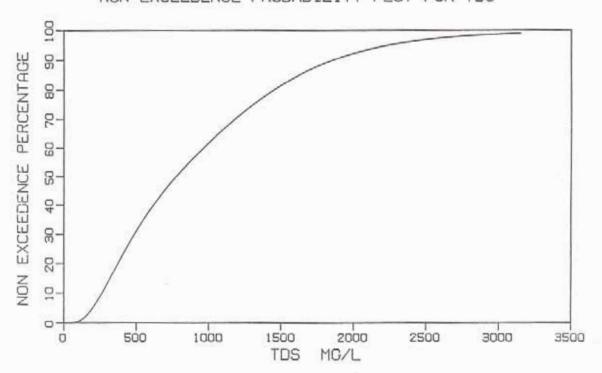
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.3	6.1	8.7	0.6	6.8	7.8
EC	(MS/M)	45.8	12.5	83.1	22.4	25.0	74.5
TDS	(MG/L)	383	111	618	171	227	558
CA	(MG/L)	35	13	52	13	21	47
MG	(MG/L)	16	5	38	9	8	27
NA	(MG/L)	41	7	86	26	13	77
K	(MG/L)	6.4	3.8	11.1	2.0	5.1	9.4
TAL	(MG/L HCO ₃	167	57	335	77	92	251
CL	(MG/L)	49	6	92	31	17	89
SO4	(MG/L)	36	5	66	22	16	63
F	(MG/L)	0.4	0.2	0.7	0.2	0.3	0.6
SI	(MG/L)	5.2	<0.4	6.7	2.0	2.0	6.0
NOa	(MG/L N)	0.44	0.04	4.65	0.99	0.30	1.71
PO4	(MG/L P)	0.220	<0.005	1.472	0.362 (0.101	0.900

	IN PARAMETERS
MEAN	STD DEV
u _i) 5.2893	(σ _i) 0.3774
u ₂) 6.1790	(σ _z) 0.1311
	MEAN u1) 5.2893 u2) 6.1790 TY FACTOR (x)

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: RIET RIVER AT AUCAMPSHOOP


LATITUDE: 28"57'30" S LONGITUDE 24"14'30" E

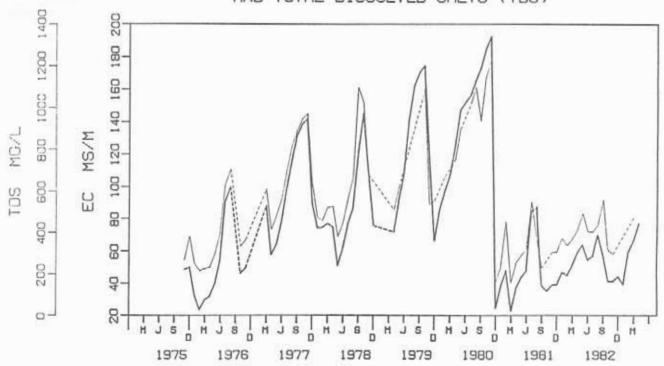

	SAM	PLING INFO	ORMATION	V	
TOTAL	PERIOD OF	SAMPLING:	70/06/08	3 TO 82/1	1/07
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	109	27	11	16	0.69

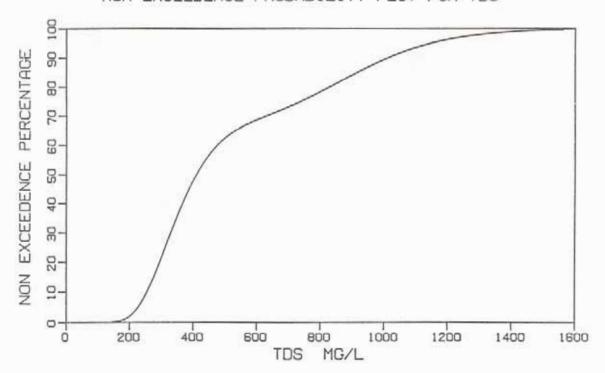
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	6.6	7.7	0.4	7.3	7.7
EC	(MS/M)	123.2	28.0	371.2	99.2	71.2	290.6
TDS	(MG/L)	600	207	2402	735	451	2044
CA	(MG/L)	45	23	96	24	39	92
MG	(MG/L)	32	10	150	47	26	125
NA	(MG/L)	89	18	501	163	63	408
K	(MG/L)	5.8	4.5	7.1	0.9	5.3	7.0
TAL	(MG/L HCO,	188	107	366	82	154	338
CL	(MG/L)	126	18	733	243	92	620
SO	(MG/L)	84	14	546	181	64	449
F	(MG/L)	0.5	0.3	0.9	0.2	0.4	0.8
SI	(MG/L)	5.0	3.3	5.8	0.9	4.4	5.8
NO ₃	(MG/L N)	0.09	<0.02	1.06	0.32	0.03	0.34
POA	(MG/L P)	0.009	0.006	0.089	0.027	0.007	0.051

MIXED LOG-NOF	ICE PROBABILITY RMAL DISTRIBUT	/ PLOT FOR TOS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 6.3576	(0,) 0.7092
2	(m ₂) 7.2667	(0,) 0.3648

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: MODDER RIVER AT TWEERIVIER


LATITUDE: 29°01'30" S LONGITUDE 24°38'30" E


	SAM	IPLING INFO	DRMATION		
TOTAL	PERIOD OF	SAMPLING:	71/05/03	TO 83/04	4/08
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	283	158	85	73	1.16

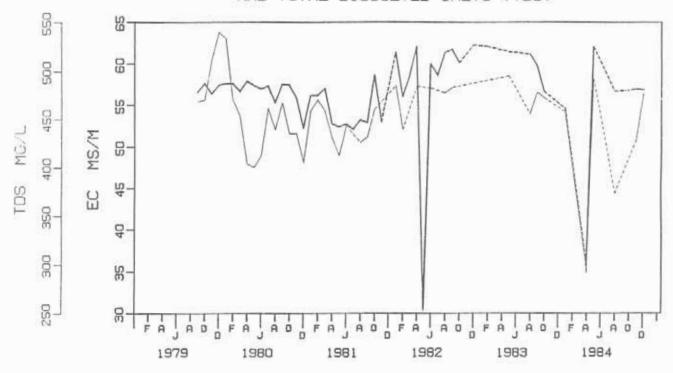
	1	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	6.1	7.9	0.5	7.3	7.7
EC	(MS/M)	60.6	22.5	196.0	49.8	42.4	168.9
TDS	(MG/L)	506	152	1231	328	335	1093
CA	(MG/L)	41	19	89	20	34	80
MG	(MG/L)	25	6	91	25	16	73
NA	(MG/L)	60	12	197	59	37	171
K	(MG/L)	5.7	3.3	8.6	1.1	5.3	7.3
TAL	(MG/L HCOa)	199	65	330	67	158	304
CL	(MG/L)	84	10	389	112	52	297
SO4	(MG/L)	49	9	216	66	25	175
F	(MG/L)	0.5	0.2	0.8	0.2	0.4	0.8
SI	(MG/L)	4.5	2.5	6.5	0.9	3.8	5.5
NOa	(MG/L N)	0.16	<0.02	3.24	0.52	0.04	0.60
PO4	(MG/L P)	0.017	<0.005	0.175	0.028	0.008	0.046

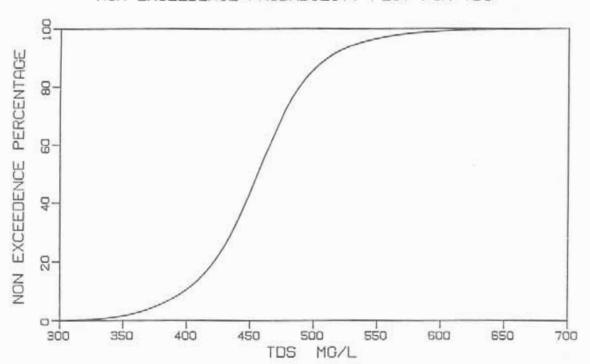
MEAN	ST	D DEV
,) 6.8130	(o ₁)	0.2369
2) 5.8496	(o ₂)	0.2914
	1) 6.8130 2) 5.8496	,) 6.8130 (σ_i)

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC) AND TOTAL DISSOLVED SALTS (TDS)

NAME: TROMPSBURG EYE AT TROMPSBURG TOWNLANDS

LATITUDE: 30°02'30" S LONGITUDE 25°46'45" E


TYPE: GAUGING WEIR

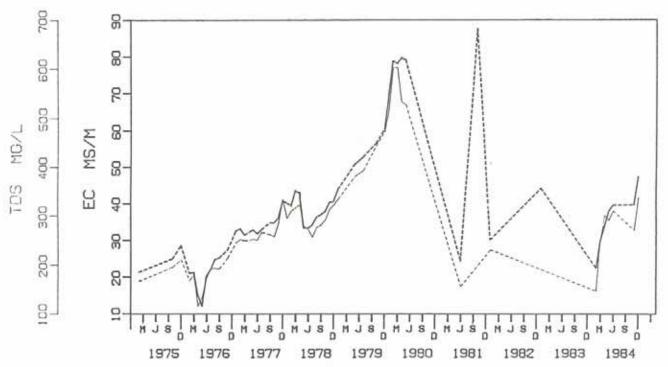

	SAM	PLING INFO	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	79/09/29	TO 86/10	2/07
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	118	94	48	46	1.04

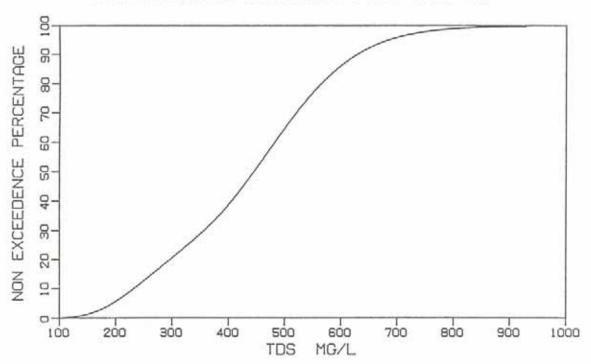
		WATER	QUALITY	STAT	ISTICS		
DETE	RMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	6.5	8.5	0.3	7.5	7.9
EC	(MS/M)	57.0	30.3	62.3	3.8	56.1	59.9
TDS	(MG/L)	460	373	600	44	432	518
CA	(MG/L)	54	33	58	4	52	56
MG	(MG/L)	25	21	29	2	24	27
NA	(MG/L)	31	28	42	3	30	38
K	(MG/L)	1.1	0.8	4.9	0.7	1.0	2.6
TAL	(MG/L HCO,	274	208	375	27	257	298
CL	(MG/L)	22	6	38	5	20	25
sa,	(MG/L)	14	8	70	9	12	24
F	(MG/L)	0.7	0.5	1.3	0.2	0.6	1.0
SI	(MG/L)	16.1	10.4	20.0	2.0	15.0	18.5
NO.	(MG/L N)	3.23	0.66	16.67	3.83	2.70	11.80
Pa4		0.008	<0.005	0.272	0.038 <	0.005	0.018

CE PROBABILITY MAL DISTRIBUTI	
MEAN	STD DEV
(m _t) 6.1047	(ơ _i) 0.1319
(m ₂) 6.1309	(o ₂) 0.0548
	MEAN (m _t) 6.1047

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: TIERPOORT DAM: NEAR DAM WALL


LATITUDE: 29°25'15" S LONGITUDE 26°08'15" E


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	72/10/27	7 TO 86/10	0/07
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	85	15	9	6	1.50

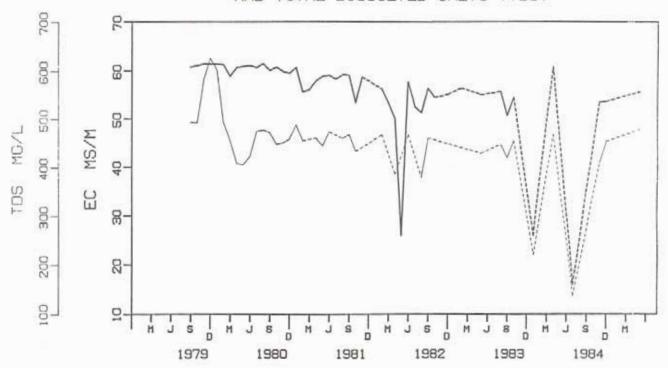
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.5	7.2	8.1	0.3	7.3	7.8
EC	(MS/M)	56.6	24.3	87.5	19.2	47.5	79.4
TDS	(MG/L)	444	155	602	135	381	588
CA	(MG/L)	33	16	38	6	31	37
MG	(MG/L)	18	6	22	5	14	22
NA	(MG/L)	55	16	104	31	48	104
K	(MG/L)	8.1	5.7	11.8	2.0	7.8	11.4
TAL	(MG/L HCO _a	239	81	313	64	208	304
CL	(MG/L)	38	9	75	22	29	73
SO4	(MG/L)	28	6	43	13	16	41
F	(MG/L)	0.7	0.3	1.1	0.2	0.5	1.0
SI	(MG/L)	2.8	<0.4	7.2	1.9	1.8	4.3
NOa	(MG/L N)	0.12	<0.02	1.28	0.39	0.03	0.73
PO ₄	(MG/L P)	0.062	0.011	0.198	0.059	0.031	0.146

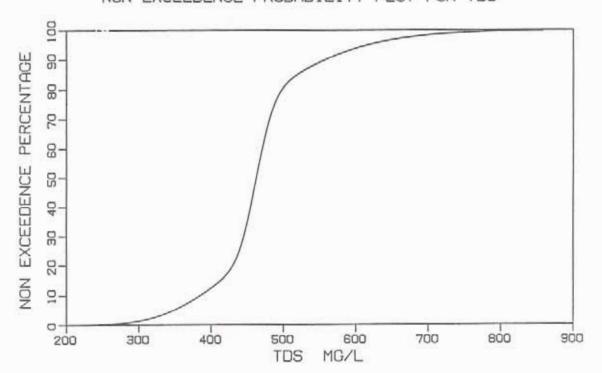
	CE PROBABILITY RMAL DISTRIBUT:	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ _i) 5.6936	(σ _ι) 0.3681
2	(M _e) 6.2324	(0,) 0.2057

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: MOSTERS HOEK EYE AT MOSTERS HOEK

LATITUDE: 29°40'00" S LONGITUDE 26°14'45" E


TYPE: GAUGING WEIR

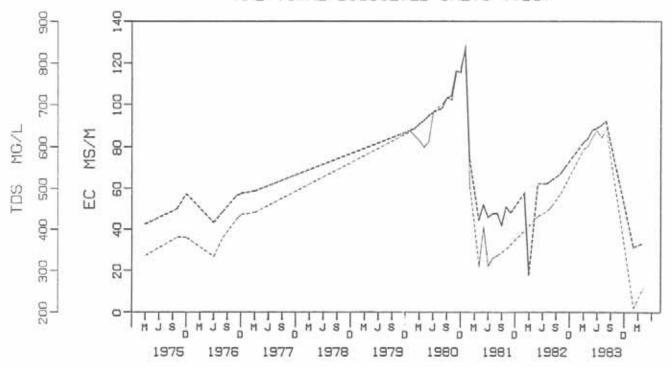

	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/10/29	9 TO 86/09	9/02
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	114	92	47	45	1.04

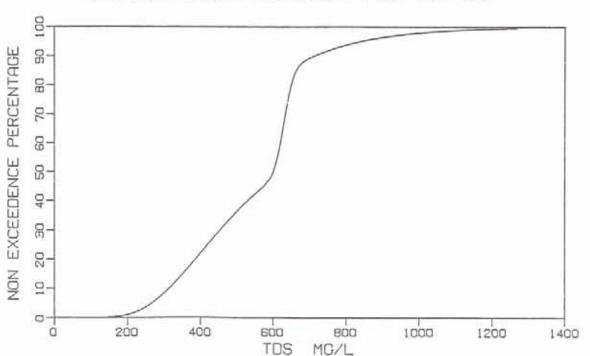
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	5.5	8.4	0.4	7.4	7.9
EC	(MS/M)	60.3	26.0	62.4	4.5	57.7	61.5
TDS	(MG/L)	468	379	667	63	442	581
CA	(MG/L)	55	33	65	4	54	58
MG	(MG/L)	23	17	27	2	22	24
NA	(MG/L)	39	29	43	3	38	41
K	(MG/L)	2.7	0.6	3.7	0.6	2.6	3.1
TAL	(MG/L HCO3	262	211	346	27	242	278
CL	(MG/L)	26	13	42	4	25	30
SO4	(MG/L)	23	11	75	10	20	28
F	(MG/L)	1.0	0.5	1.2	0.1	1.0	1.1
SI	(MG/L)	12.4	7.6	17.0	1.4	12.1	14.4
NO ₂	(MG/L N)	6.06	1.28	32.68	8.41	3.33	25.81
POA	(MG/L P)	0.006	<0.005	0.098	0.018 <	0.005	0.021

OTD DEV
STD DEV
385 (ơ ₁) 0.2241
369 (J ₂) 0.0412

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: KALKFONTEIN DAM: NEAR DAM WALL


LATITUDE: 29°29'45" S LONGITUDE 25°13'15" E

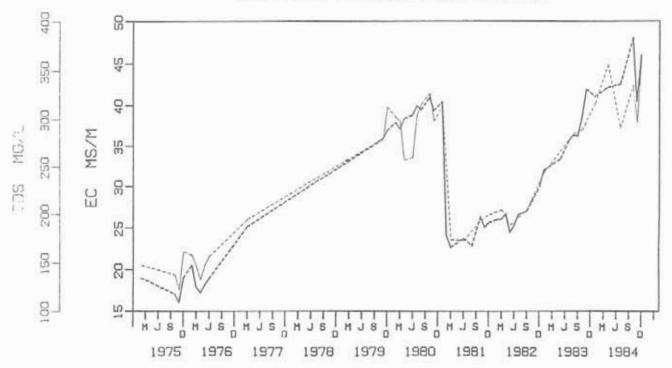

	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	68/04/02	2 TO 84/04	4/02
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	87	49	23	26	0.88

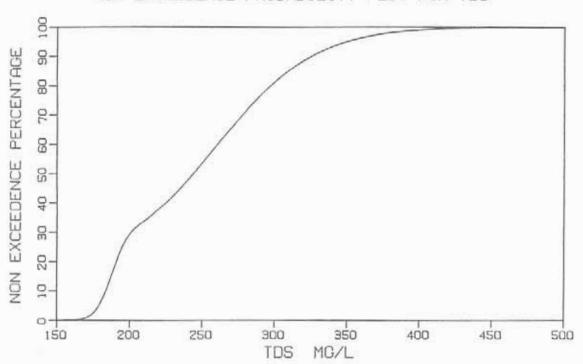
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.7	5.5	8.4	0.6	7.3	8.1
EC	(MS/M)	87.8	17.8	128.0	24.6	62.1	106.0
TDS	(MG/L)	608	309	852	147	450	760
CA	(MG/L)	30	24	46	6	26	41
MG	(MG/L)	40	17	54	11	26	50
NA	(MG/L)	97	42	156	33	58	131
K	(MG/L)	6.3	4.2	9.0	1.2	5.3	7.7
TAL	(MG/L HCO ₃	263	125	320	54	217	307
CL	(MG/L)	101	32	163	34	59	130
SO4	(MG/L)	74	32	129	24	50	102
F	(MG/L)	0.9	0.5	1.2	0.2	0.6	1.0
SI	(MG/L)	0.6	<0.4	6.9	1.4	0.5	3.3
NO3	(MG/L N)	0.10	<0.02	3.36	0.54	0.02	0.50
PO ₄	(MG/L P)	0.012	<0.005	0.074	0.019	0.005	0.048

	CE PROBABILITY F MAL DISTRIBUTIO	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 6.1571	(σ ₁) 0.4010
2	(u ₂) 6.4457	(σ_z) 0.0332
PROPORTI	ONALITY FACTOR (c)	= .6535

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: RUSTFONTEIN DAM:NEAR DAM WALL


LATITUDE: 29°16'15" S LONGITUDE 26°37'00" E

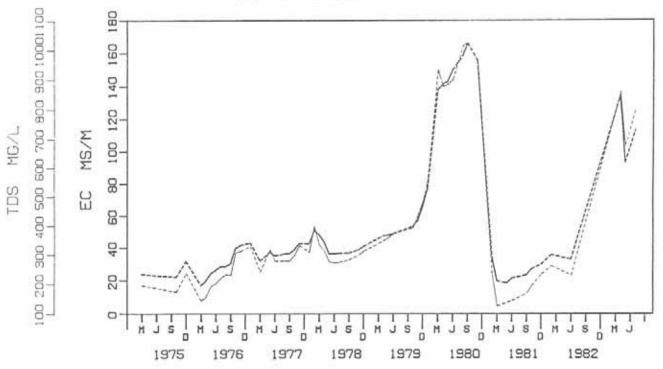

	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	68/05/19	9 TO 86/08	3/01
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	101	36	20	16	1.25

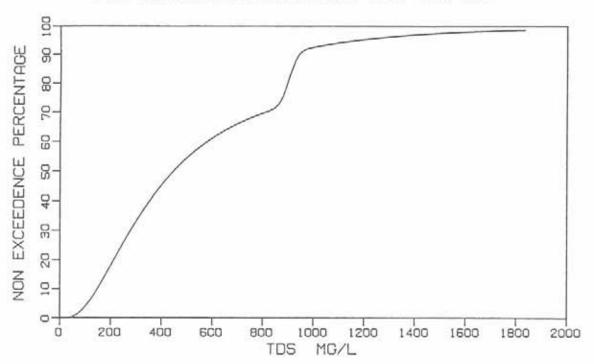
	I	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.5	6.3	8.2	0.4	7.2	7.9
EC	(MS/M)	34.5	22.6	41.9	6.4	26.0	39.7
TDS	(MG/L)	283	172	341	53	204	315
CA	(MG/L)	26	17	32	4	20	29
MG	(MG/L)	14	8	19	3	10	16
NA	(MG/L)	26	15	34	6	20	32
K	(MG/L)	5.4	3.9	7.5	0.7	5.1	6.1
TAL	(MG/L HCO3	184	102	234	39	128	206
CL	(MG/L)	12	6	25	4	10	16
SO ₄	(MG/L)	10	4	16	3	7	13
F	(MG/L)	0.4	0.3	0.6	0.1	0.4	0.6
SI	(MG/L)	0.7	<0.4	3.2	0.9	0.5	2.5
NOa	(MG/L N)	0.14	<0.02	2.58	0.54	0.03	0.52
PO ₄	(MG/L P)	0.008	<0.005	0,138	0.031 <	0.005	0.046

STD DEV
(o ₁) 0.1825
(σ ₂) 0.0436
(

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: KRUGERSDRIFT DAM: NEAR DAM WALL


LATITUDE: 28°53'00" S LONGITUDE 25°57'30" E


SAMPLING INFORMATION						
TOTAL	PERIOD OF	SAMPLING:	75/03/10	TO 83/0	7/07	
	TOTAL	1979-1983	SUMMER	WINTER	RATIO	
SAMPLES	85	27	12	15	0.80	

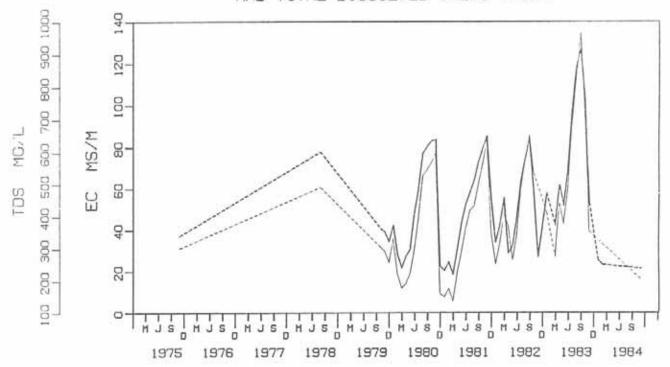
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	6.3	8.0	0.5	7.2	7.8
EC	(MS/M)	57.0	18.6	166.0	51.7	33.7	152.1
TDS	(MG/L)	458	126	1024	311	241	944
CA	(MG/L)	39	17	90	24	26	81
MG	(MG/L)	22	7	77	26	1 1	72
NA	(MG/L)	51	10	171	47	23	130
K	(MG/L)	6.7	5.8	13.8	1.7	6.3	8.0
TAL	(MG/L HCO ₃	233	69	355	89	123	329
CL	(MG/L)	52	7	324	113	26	278
SO4	(MG/L)	31	<2	113	37	20	104
F	(MG/L)	0.4	0.2	1.6	0.3	0.3	0.5
SI	(MG/L)	2.1	<0.4	5.8	2.0	0.9	5.5
NO3	(MG/L N)	0.09	<0.02	2.93	0.74	0.03	0.98
PO ₄	(MG/L P)	0.029	<0.005	0.271	0.072	0.014	0.147

	CE PROBABILITY MAL DISTRIBUT:	PLOT FOR TDS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.8891	(σ ₁) 0.7631
2	(μ_2) 6.8047	(σ_2) 0.0316
PROPORTI	ONALITY FACTOR (∝) = .8195

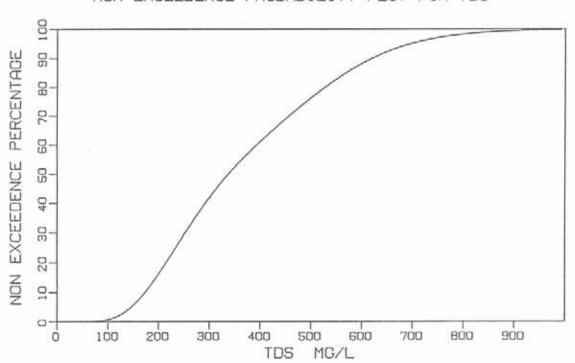
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VALS RIVER AT BOTHAVILLE

LATITUDE: 27°24'00" S LONGITUDE 26°37'00" E


TYPE: GAUGING WEIR

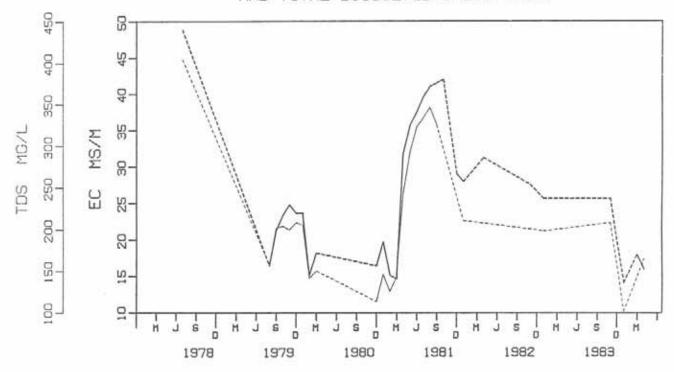
	SAM	PLING INFO	ORMATION	I	
TOTAL	PERIOD OF	SAMPLING:	72/08/01	TO 84/1	1/12
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	222	171	79	92	0.86

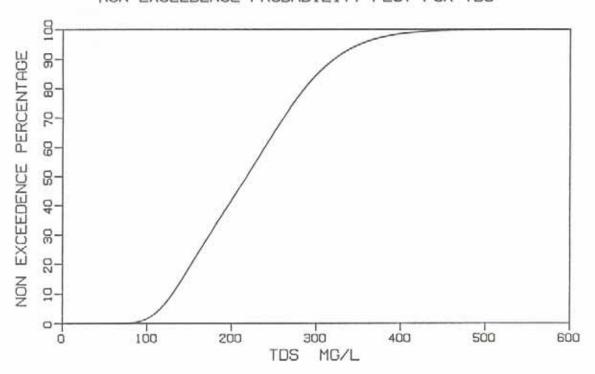

	ļ	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	5.3	9.4	0.7	7.3	8.4
EC	(MS/M)	49.5	14.1	139.5	27.0	32.6	87.3
TDS	(MG/L)	387	100	1074	192	269	670
CA	(MG/L)	37	11	89	13	24	50
MG	(MG/L)	19	6	57	13	12	42
NA	(MG/L)	36	10	204	32	25	84
K	(MG/L)	6.5	1.8	22.0	3.2	5.2	10.3
TAL	(MG/L HCO ₃)		44	363	71	121	270
CL.	(MG/L)	29	5	189	30	19	73
SO ₄	(MG/L)	48	<2	468	82	29	136
F	(MG/L)	0.4	0.2	0.7	0.1	0.3	0.5
SI	(MG/L)	4.4	<0.4	8.4	2.5	0.9	6.8
NO3	(MG/L N)	0.21	<0.02	7.47	0.88	0.05	1.48
PO ₄	(MG/L P)	0.113	<0.005	3.727	0.593	0.062	0.844

MIXED LOG-NOR	MAL DISTRIBUT	ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.6433	(σ _i) 0.4969
2	(m ₂) 6.3120	(o ₂) 0.2182

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VALS RIVER AT KLIPFONTEIN


LATITUDE: 27°56'15" S LONGITUDE 27°59'30" E

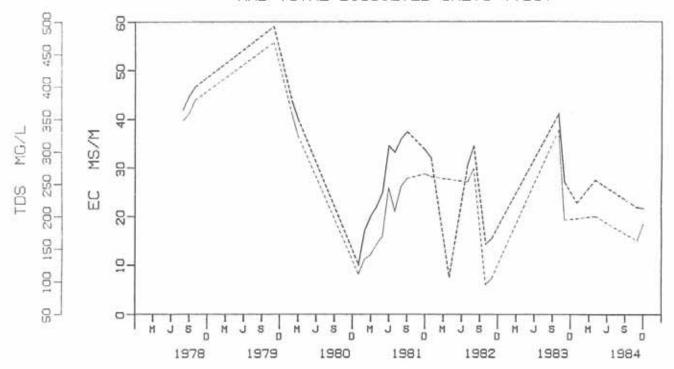

	SAM	PLING INFO	ORMATION		
TOTAL	PERIOD OF	SAMPLING:	78/07/05	TO 86/03	3/30
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	87	75	48	27	1.78

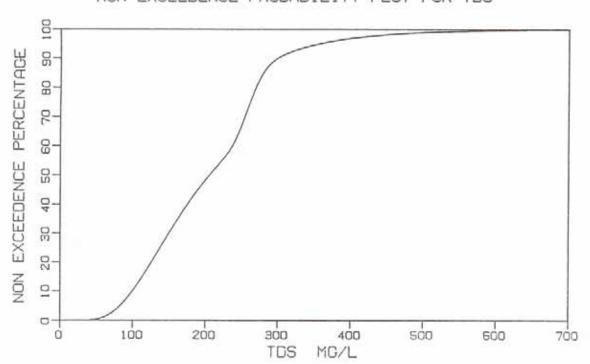
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.0	5.4	7.8	0.5	6.5	7.4
EC	(MS/M)	25.6	10.6	44.6	9.3	19.0	40.2
TDS	(MG/L)	198	87	346	62	150	287
CA	(MG/L)	16	9	37	7	12	31
MG	(MG/L)	8	5	17	3	6	14
NA	(MG/L)	17	7	27	5	13	24
K	(MG/L)	5.6	4.1	9.3	1.4	4.6	7.6
TAL	(MG/L HCO ₃	112	40	231	47	81	190
CL	(MG/L)	7	4	19	3	6	12
SO_4	(MG/L)	13	2	40	9	8	28
F	(MG/L)	0.3	0.1	0.6	0.1	0.2	0.5
SI	(MG/L)	6.6	3.7	8.6	1.1	5.9	7.9
NO3	(MG/L N)	0.15	0.02	3.63	0.68	0.06	1.06
PO ₄	(MG/L P)	0.045	<0.005	0.244	0.051	0.034	0.121

	CE PROBABILITY RMAL DISTRIBUT	PLOT FOR TOS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.0578	(σ ₁) 0.2512
2	(m ₂) 5.5727	(0,) 0.2128

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: RENOSTER RIVER AT ARRIESRUST


LATITUDE: 27°02'45" S LONGITUDE 27°00'15" E


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	78/08/07	7 TO 84/12	2/04
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	96	59	29	30	0.97

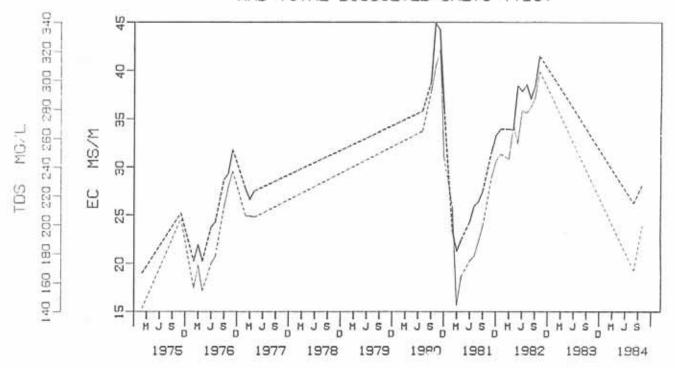
	Į	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.0	6.0	8.2	0.6	6.8	7.8
EC	(MS/M)	27.6	6.9	59.0	10.1	22.0	38.7
TDS	(MG/L)	205	90	468	78	155	313
CA	(MG/L)	22	4	53	10	14	32
MG	(MG/L)	11	3	38	6	7	16
NA	(MG/L)	18	4	33	6	14	21
K	(MG/L)	4.5	1.8	6.3	0.9	4.1	5.5
TAL	(MG/L HCO,	119	16	256	58	73	191
CL	(MG/L)	12	5	38	6	10	19
SOA	(MG/L)	12	<2	75	1 1	9	21
F	(MG/L)	0.3	0.1	0.6	0.1	0.3	0.4
SI	(MG/L)	7.4	4.1	9.8	1.3	6.3	8.5
NO.	(MG/L N)	0.16	<0.02	0.53	0.13	0.11	0.41
PO ₄	(MG/L P)	0.039	<0.005	0.880	0.140	0.026	0.150

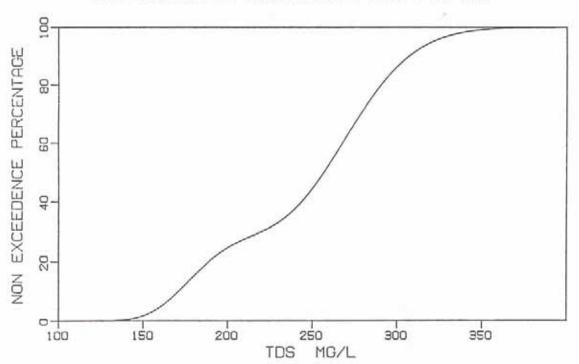
	CE PROBABILITY MAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.1467	(σ_{i}) 0.4817
2	(m ₂) 5.5592	(σ_{z}) 0.0678
PROPORTI	ONALITY FACTOR («)) = .7739

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C7R0101

NAME: KOPPIES DAM: NEAR DAM WALL


LATITUDE: 27°15'30" S LONGITUDE 27°40'30" E


	SAM	IPLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	72/06/12	2 TO 86/0°	7/17
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	58	24	10	14	0.71

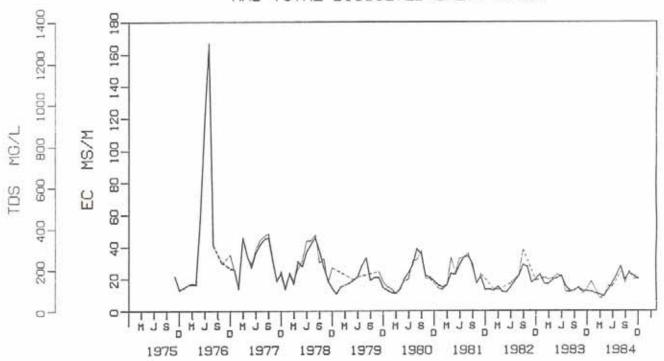
	1	WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.2	6.3	8.0	0.5	6.8	7.7
EC	(MS/M)	34.9	21.2	44.9	6.9	27.2	40.7
TDS	(MG/L)	253	144	321	50	208	305
CA	(MG/L)	25	15	31	5	21	30
MG	(MG/L)	13	8	18	3	1 1	17
NA	(MG/L)	22	13	33	6	16	29
K	(MG/L)	5.9	5.0	7.0	0.5	5.8	6.6
TAL	(MG/L HCO ₃	149	75	182	31	132	178
CL	(MG/L)	18	8	32	6	13	24
SO4	(MG/L)	14	2	28	6	13	22
F	(MG/L)	0.4	0.2	0.6	0.1	0.4	0.6
SI	(MG/L)	2.4	0.7	6.7	2.0	1.2	6.5
NOa	(MG/L N)	0.21	<0.02	0.75	0.17	0.06	0.37
PO ₄	(MG/L P)	0.010	<0.005	0.184	0.042	0.007	0.042

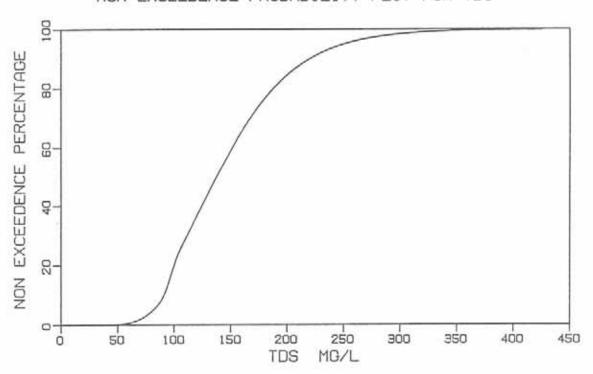
	' PLOT FOR TDS ION PARAMETERS
MEAN	STD DEV
(m ₁) 5.1851	(σ,) 0.1114
(4,) 5.6077	(ດູ) 0.1105
	MEAN (w,) 5.1851

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: WILGE RIVER AT FRANKFORT

LATITUDE: 27°16'00" S LONGITUDE 28°29'00" E


TYPE: GAUGING WEIR


	SAM	PLING INFO	ORMATION	l	
TOTAL	PERIOD OF	SAMPLING:	71/12/06	TO 86/10	0/09
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	484	.224	106	118	0.90

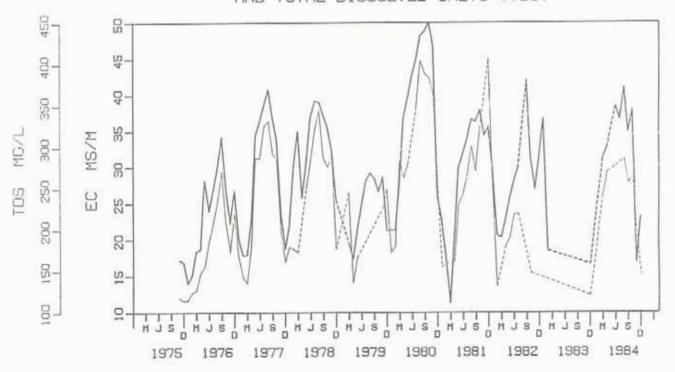
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.1	5.7	7.7	0.4	6.7	7.4
EC	(MS/M)	17.2	6.7	51.3	7.3	13.0	31.5
TDS	(MG/L)	145	68	300	60	102	254
CA	(MG/L)	13	5	36	7	11	28
MG	(MG/L)	6	3	18	3	4	13
NA	(MG/L)	9	4	24	4	7	17
K	(MG/L)	3.1	2.0	7.2	1.1	2.5	5.1
TAL	(MG/L HCO ₃	64	13	202	43	51	156
CL	(MG/L)	7	<3	18	3	5	12
SO4	(MG/L)	1.1	<2	32	7	6	20
F	(MG/L)	0.3	0.1	0.7	0.1	0.2	0.4
SI	(MG/L)	5.5	3.1	7.9	0.9	5.2	6.6
NO ₃	(MG/L N)	0.18	<0.02	3.49	0.53	0.08	0.69
PQ4	(MG/L P)	0.029	<0.005	0.213	0.045	0.009	0.100

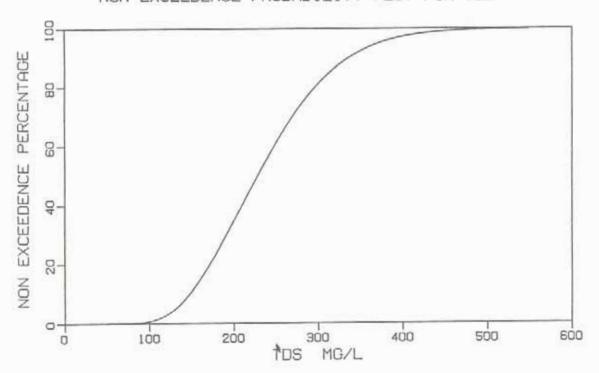
E PROBABILITY 1AL DISTRIBUTI	PLOT FOR TDS ON PARAMETERS
MEAN	STD DEV
(m ₁) 4.9614	(o _i) 0.3489
(m ₂) 4.5754	(σ ₂) 0.0490
	MEAN (M1) 4.9614

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: CORNELIS RIVER AT WARDEN

LATITUDE: 27°50'30" S LONGITUDE 28°57'45" E


TYPE: STORAGE WEIR

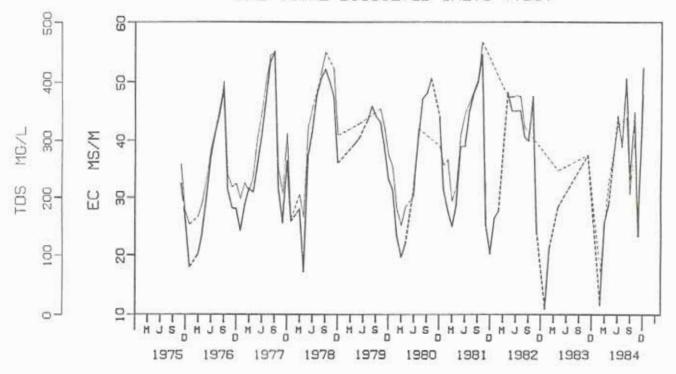

	SAM	PLING INFO	ORMAT I ON	4	
TOTAL	PERIOD OF	SAMPLING:	71/09/13	3 TO 86/04	4/22
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	327	168	88	80	1.10

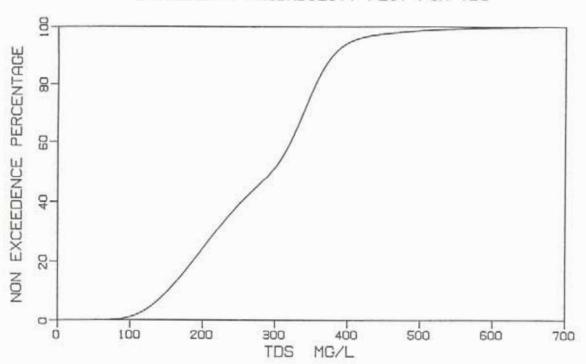
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.0	6.2	8.0	0.4	6.8	7.6
EC	(MS/M)	29.4	8.2	63.0	10.1	22.7	46.5
TDS	(MG/L)	244	120	407	83	180	371
CA	(MG/L)	23	9	42	10	17	40
MG	(MG/L)	10	5	21	5	7	19
NA	(MG/L)	20	1 1	87	13	14	32
K	(MG/L)	4.4	3.2	8.2	1.2	3.9	6.4
TAL	(MG/L HCO3	122	55	265	59	95	234
CL	(MG/L)	9	5	131	20	8	16
SOA	(MG/L)	12	6	29	6	9	23
F	(MG/L)	0.4	0.2	0.7	0.1	0.4	0.6
SI	(MG/L)	5.9	0.8	8.5	2.1	3.7	7.5
NO ₃	(MG/L N)	0.73	0.02	9.67	1.59	0.48	1.61
PO ₄	(MG/L P)	0.023	<0,005	0,178	0.040	0.008	0.076

DISTRIBUTION	N PARAMETERS
MEAN	STD DEV
(µ ₁) 5.3334	(o _i) 0.3108
(μ _z) 5.6296	(o ₂) 0.2232
	MEAN (μ ₁) 5.3334

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: LIEBENBERGSVLEI RIVER AT DE WELKOM


LATITUDE: 27°42'00" S LONGITUDE 28°19'30" E

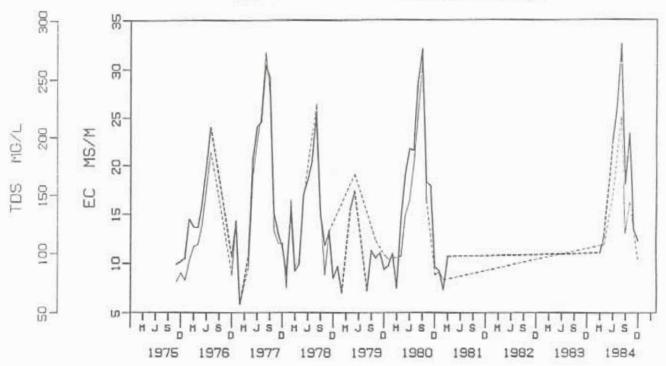

	SAM	IPLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	75/11/20	TO 86/10	0/23
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	297	135	68	67	1.01

		WATER	QUALITY	STAT	ISTICS		
DETE	RMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.3	5.7	8.1	0.5	6.8	7.7
EC	(MS/M)	37.4	10.9	56.6	10.6	27.2	47.4
TDS	(MG/L)	291	151	467	77	247	377
CA	(MG/L)	27	7	47	9	22	38
MG	(MG/L)	1 1	5	18	3	10	15
NA	(MG/L)	32	13	57	1 1	24	46
K	(MG/L)	6.2	5.0	7.5	0.6	5.7	7.1
TAL	(MG/L HCO _a) 161	20	281	56	130	236
CL	(MG/L)	17	5	30	6	14	26
SO4	(MG/L)	15	6	28	5	1 1	20
F	(MG/L)	0.4	0.2	0.9	0.1	0.4	0.6
SI	(MG/L)	4.9	1.6	6.4	1.3	3.6	6.0
NO ₃	(MG/L N)	0.10	<0.02	1.17	0.28	0.04	0.67
PO4	(MG/L P)	0.025	<0.005	0.162	0.035	0.012	0.075

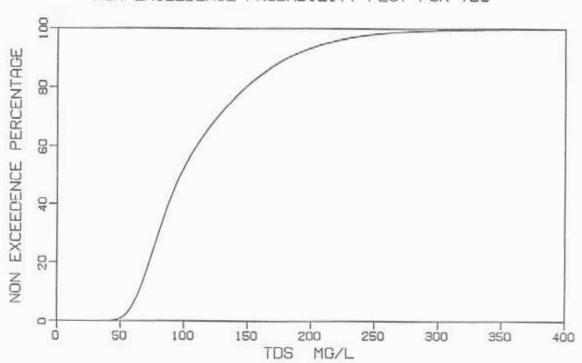
MEAN	STI	D DEV
(µ ₁) 5.4206	(σ_i)	0.3878
(m ₂) 5.8415	(o ₂)	0.0819
	MEAN (M1) 5.4206	(μ ₁) 5.4206 (σ ₁)

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: ELANDS RIVER AT ELANDS RIVER DRIFT


LATITUDE: 28°22'45" S LONGITUDE 28°51'45" E

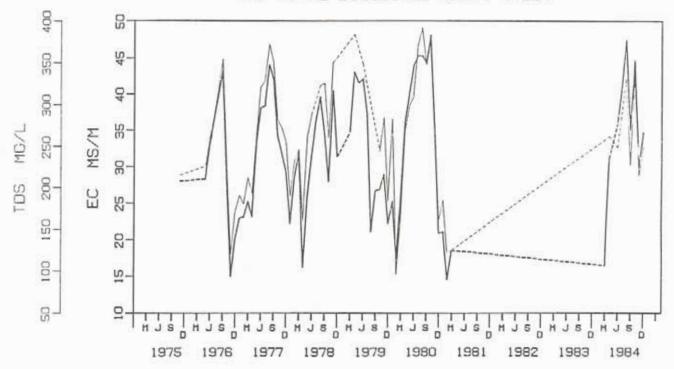
	SAM	IPLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	66/02/17	7 TO 86/10	0/08
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	215	77	48	29	1.66

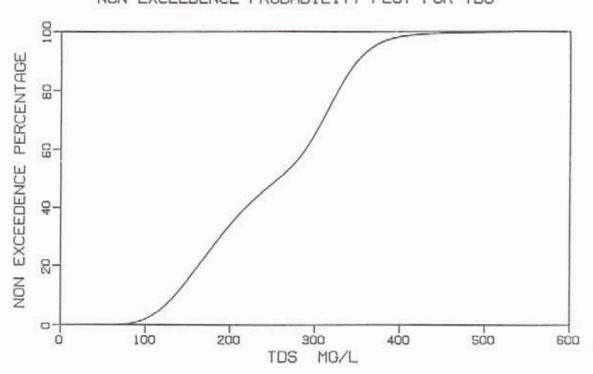

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.8	5.3	7.5	0.6	6.2	7.2
EC	(MS/M)	12.2	5.2	33.2	7.1	9.0	24.2
TDS	(MG/L)	116	56	266	54	92	194
CA	(MG/L)	14	5	31	7	10	24
MG	(MG/L)	5	3	14	3	4	11
NA	(MG/L)	7	4	20	4	5	13
K	(MG/L)	1.8	1.0	3.8	0.8	1.2	2.8
TAL	(MG/L HCO3) 69	25	180	39	50	132
CL	(MG/L)	4	<3	14	3	3	7
SO4	(MG/L)	7	3	18	4	5	13
F	(MG/L)	0.1	0.1	0.3	0.1	0.1	0.2
SI	(MG/L)	6.9	2.4	10.6	2.0	6.2	8.1
NOa	(MG/L N)	0.07	<0.02	1.23	0.30	0.02	0.16
PO ₄	(MG/L P)	0.017	<0.005	0.127	0.031	0.007	0.053

MEAN	ST	D DEV
4.8882	(o ₁)	0.3513
4.3514	(02)	0.2100
)	4.8882 4.3514	e Dryn-syriade Meist *

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: KLERK SPRUIT AT GEDULD


LATITUDE: 28°17'45" S LONGITUDE 28°48'30" E

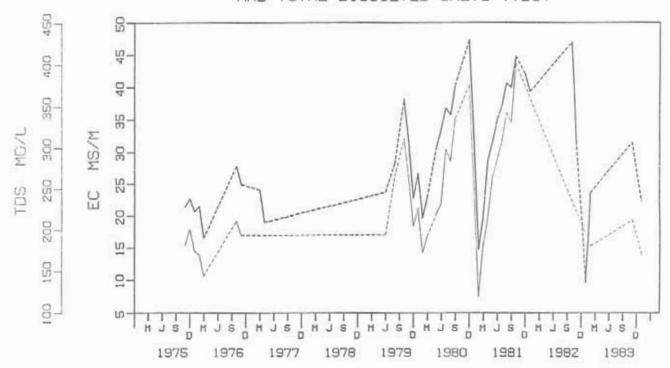

	SAM	IPLING INFO	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	66/02/17	7 TO 85/1	1/06
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	226	83	48	35	1.37

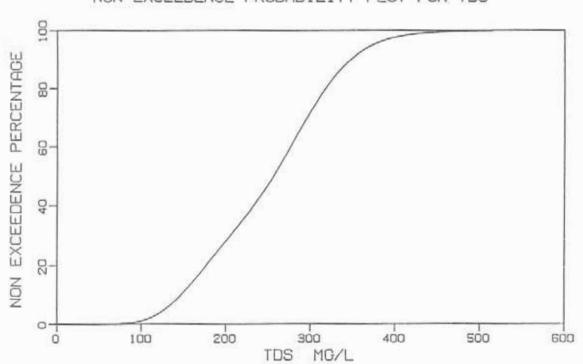
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	6.2	8.0	0.5	7.2	7.8
EC	(MS/M)	31.1	8.3	51.0	11.4	20.9	44.6
TDS	(MG/L)	284	96	392	94	184	378
CA	(MG/L)	29	1 1	42	9	20	36
MG	(MG/L)	15	5	22	5	8	19
NA	(MG/L)	21	7	52	14	13	41
K	(MG/L)	2.5	1.9	4.0	0.6	2.3	3.5
TAL	(MG/L HCO a	197	53	276	71	119	261
CL	(MG/L)	7	<3	13	3	4	10
SO4	(MG/L)	6	<2	38	8	5	13
F	(MG/L)	0.4	0.2	0.5	0.1	0.3	0.5
SI	(MG/L)	5.4	2.2	8.3	1.9	4.1	7.6
NO ₃	(MG/L N)	0.04	<0.02	0.76	0.25	0.02	0.57
PO ₄	(MG/L P)	0.011	<0.005	0.060	0.016	0.009	0.036

		Y PLOT FOR TDS TION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.2544	(o,) 0.3540
2	(m ₂) 5.7679	(σ _z) 0.0995
PROPORTI	ONALITY FACTOR ((a) = .6196

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: TIER RIVER AT TYGER HOEK


LATITUDE: 28°03'15" S LONGITUDE 28°29'30" E

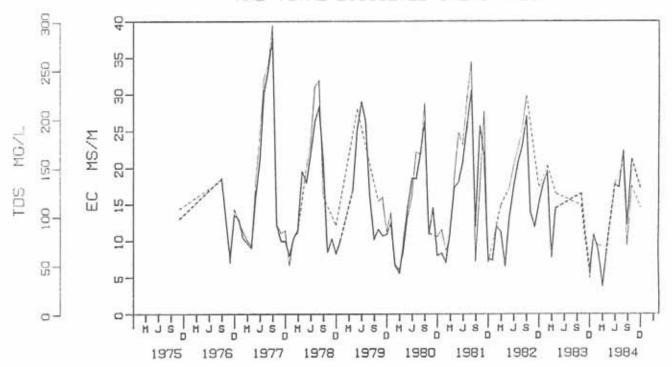

	SAM	1PLING INFO	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/11/19	TO 86/10	0/08
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	106	81	48	33	1.45

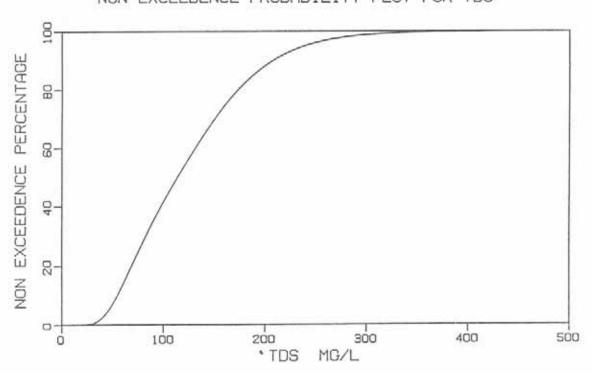
		WATER	QUALITY	STAT	ISTICS		
DETE	RMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.1	5.9	7.8	0.4	6.8	7.6
EC	(MS/M)	32.2	9.7	51.1	9.8	23.6	42.9
TDS	(MG/L)	219	87	401	70	188	327
CA	(MG/L)	23	7	40	7	16	31
MG	(MG/L)	10	4	17	3	7	13
NA	(MG/L)	24	8	47	10	18	40
K	(MG/L)	5.5	2.6	11.1	1.6	4.7	7.7
TAL	(MG/L HCO3	135	15	252	56	109	213
CL	(MG/L)	8	3	27	6	6	19
SOA	(MG/L)	1.1	2	81	13	6	28
F	(MG/L)	0.4	0.1	0.8	0.1	0.4	0.7
SI	(MG/L)	5.5	1.4	8.8	2.0	4.3	8.0
EON	(MG/L N)	0.21	<0.02	1.59	0.40	0.06	0.93
PO ₄	(MG/L P)	0.028	<0.005	0.730	0.108	0.012	0.106

		Y PLOT FOR TDS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.2829	(ơ ₁) 0.3285
2	(m ₂) 5.7006	(σ_2) 0.1552
PROPORTI	ONALITY FACTOR (

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: OUBERG SPRUIT AT FRASER SPRUIT


LATITUDE: 28°21'00" S LONGITUDE 29°05'30" E

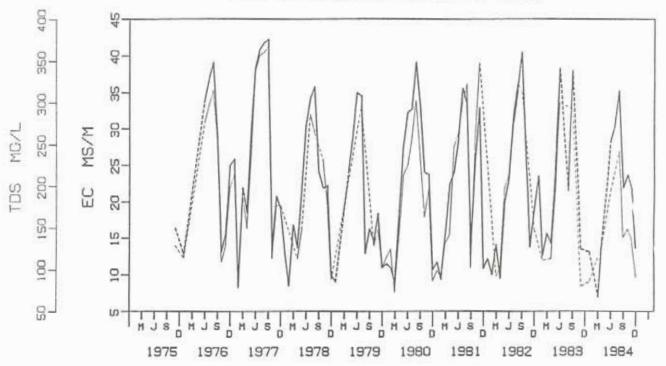

	SAM	PLING INFO	ORMAT I ON		
TOTAL	PERIOD OF	SAMPLING:	75/11/21	TO 86/10	0/01
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	311	177	89	88	1.01

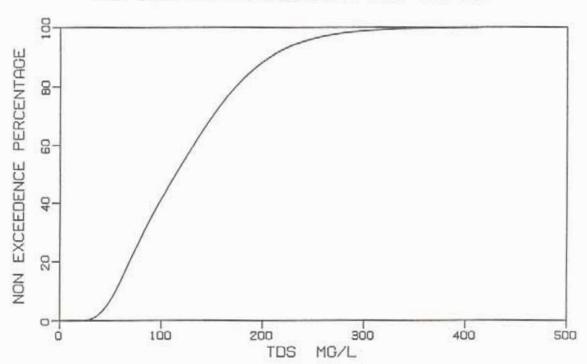
		WATER	QUALITY	STAT	ISTICS		
DETE	RMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.8	5.7	8.0	0.5	6.5	7.5
EC	(MS/M)	14.4	4.1	49.1	7.6	9.4	26.1
TDS	(MG/L)	118	37	258	56	84	209
CA	(MG/L)	12	3	28	7	7	23
MG	(MG/L)	4	1	11	2	3	9
NA	(MG/L)	10	4	23	5	7	18
K	(MG/L)	2.3	1.0	6.0	0.9	1.9	3.3
TAL	(MG/L HCO3) 67	11	167	40	43	128
CL	(MG/L)	6	<3	16	3	4	11
SO,	(MG/L)	6	<2	32	5	4	12
F	(MG/L)	0.2	0.1	0.5	0.1	0.1	0.4
SI	(MG/L)	4.1	2.2	5.9	1.1	3.3	5.4
NO ₃	(MG/L N)	0.06	<0.02	0.93	0.20	0.03	0.26
PO ₄	(MG/L P)	0.015	<0.005	0.112	0.025	0.007	0.047

	CE PROBABILITY I	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 4.3233	(ơ _i) 0.3874
2	(m ₂) 5.0535	(o ₂) 0.3192
PROPORT I	ONALITY FACTOR (@)	= ,4865

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: ELANDS RIVER AT KILLARNEY


LATITUDE: 28°09'30" S LONGITUDE 28°52'30" E

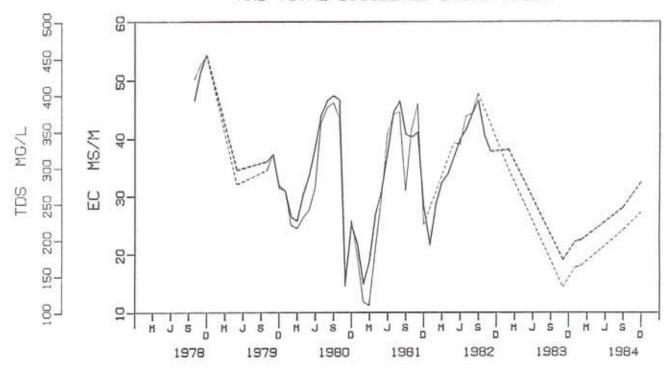

	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/11/21	TO 86/10	0/22
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	312	181	92	89	1.03

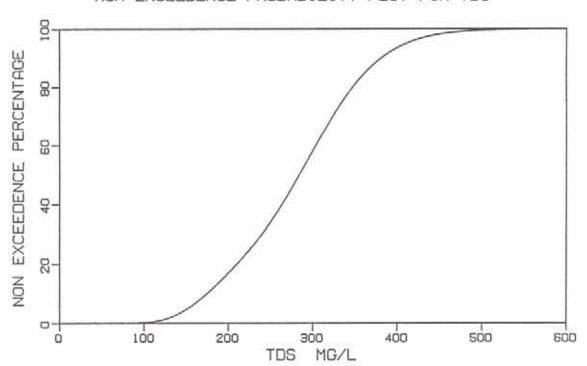
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.1	5.9	8.1	0.6	6.6	7.7
EC	(MS/M)	19.3	5.6	44.9	10.6	12.2	37.7
TDS	(MG/L)	162	55	354	85	106	301
CA	(MG/L)	18	5	42	11	11	37
MG	(MG/L)	7	2	22	5	4	17
NA	(MG/L)	10	3	24	5	6	18
K	(MG/L)	2.2	1.1	8.7	1.4	1.8	4.3
TAL	(MG/L HCO ,) 94	17	243	64	56	206
CL	(MG/L)	5	<3	22	4	4	11
SOA	(MG/L)	7	<2	26	5	5	13
F	(MG/L)	0.1	<0.1	0.6	0.1	0.1	0.3
SI	(MG/L)	6.6	1.4	10.0	1.7	5.1	8.0
NO ₃	(MG/L N)	0.14	<0.02	1.25	0.29	0.02	0.55
PO4	(MG/L P)	0.017	<0.005	0.273	0.044	0.005	0.054

		1ETERS
MEAN	STI	D DEV
u,) 4.6637	(σ_{i})	0,3688
u ₂) 5.4758	(σ_z)	0.2415
	MEAN MEAN M ₁) 4.6637 M ₂) 5.4758	μ_{i}) 4.6637 (σ_{i})

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VAALBANK SPRUIT AT VOORSPOED


LATITUDE: 28°05'00" S LONGITUDE 28°50'15" E


	SAM	PLING INFO	ORMATION	N	
TOTAL	PERIOD OF	SAMPLING:	78/10/12	2 TO 86/10	0/08
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	168	144	67	77	0.87

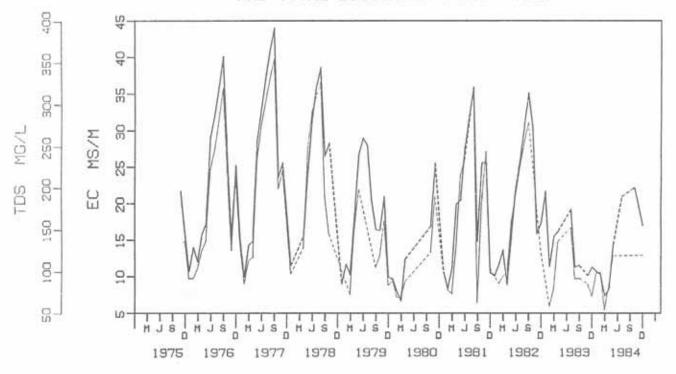
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.3	6.0	8.4	0.5	7.0	7.8
EC	(MS/M)	35.5	11.3	49.3	9.2	28.6	46.1
TDS	(MG/L)	272	98	404	80	225	377
CA	(MG/L)	23	6	35	8	17	32
MG	(MG/L)	10	3	15	3	8	13
NA	(MG/L)	35	9	57	12	29	51
K	(MG/L)	5.8	4.3	10.6	1.3	5.3	8.3
TAL	(MG/L HCO3	168	52	279	63	135	257
CL	(MG/L)	10	6	32	4	9	16
SO4	(MG/L)	9	<2	56	9	6	20
F	(MG/L)	0.5	0.2	1.0	0.1	0.4	0.6
SI	(MG/L)	5.0	<0.4	8.2	1.9	2.6	6.6
NO ₃	(MG/L N)	0.15	<0.02	2.36	0.43	0.06	0.70
PO ₄	(MG/L P)	0.025	<0.005	0.127	0.031	0.012	0.073

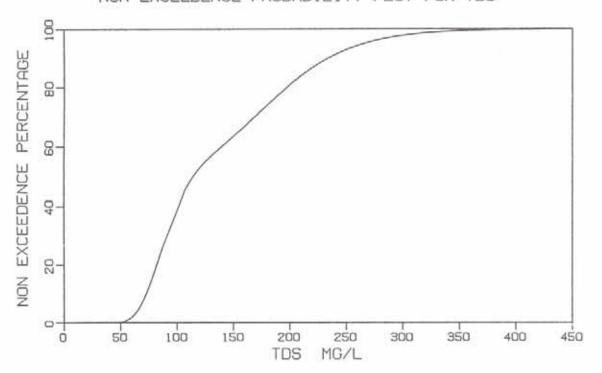
		Y PLOT FOR TDS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.3752	(o _i) 0.2992
2	(u ₂) 5.7583	(σ ₂) 0.1778

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: WILGE RIVER AT BAVARIA

LATITUDE: 27°49'00" S LONGITUDE 28°47'00" E


TYPE: RIVER SECTION


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/11/20	TO 86/10	0/28
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	397	178	101	77	1.31

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.9	5.8	7.8	0.5	6.3	7.3
EC	(MS/M)	14.9	5.7	42.7	8.7	10.5	30.0
TDS	(MG/L)	103	58	318	60	85	220
CA	(MG/L)	11	4	36	7	8	25
MG	(MG/L)	4	2	16	3	3	10
NA	(MG/L)	9	4	26	5	7	18
K	(MG/L)	2.9	1.5	9.1	1.4	2.3	4.5
TAL	(MG/L HCO3) 55	<4	210	44	42	141
CL	(MG/L)	5	<3	22	4	4	11
SO4	(MG/L)	9	<2	33	6	4	17
F	(MG/L)	0.2	<0.1	0.5	0.1	0.2	0.4
SI	(MG/L)	5.3	<0.4	6.7	1.4	4.7	6.2
NO3	(MG/L N)	0.13	<0.02	2.49	0.45	0.05	0.50
PO.	(MG/L P)	0.024	<0.005	0.292	0.052	0.014	0.068

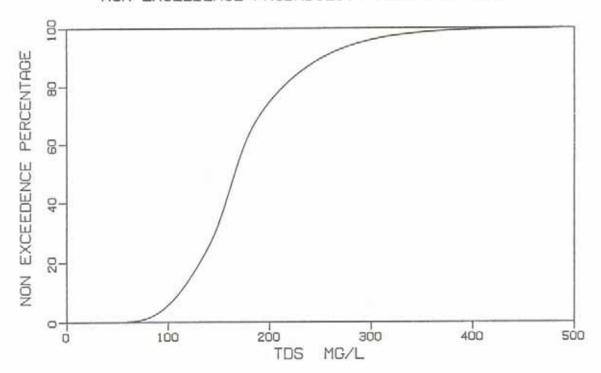
		PLOT FOR TDS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.2456	(0,) 0.2733
2	(µ ₂) 4.4855	(0,) 0.2166

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: KROM SPRUIT AT COSMOS

LATITUDE: 27°15'30" S LONGITUDE 28°24'15" E


TYPE: RIVER SECTION


	SAM	PLING INFO	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	77/10/25	TO 86/0	2/06
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	83	33	32	1	> 10

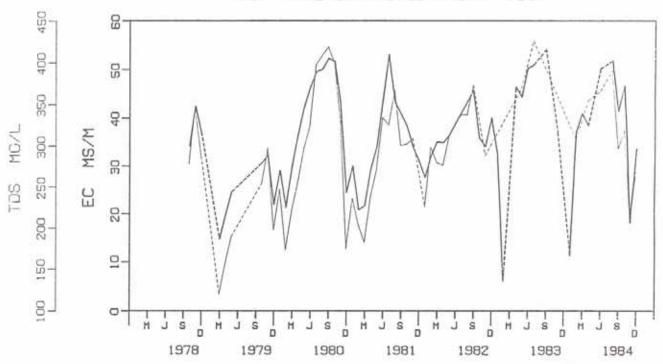
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.0	5.9	7.7	0.5	6.7	7.4
EC	(MS/M)	19.7	10.0	39.3	7.1	16.6	29.8
TDS	(MG/L)	169	71	310	57	140	242
CA	(MG/L)	14	7	28	5	11	21
MG	(MG/L)	9	5	18	3	7	13
NA	(MG/L)	13	7	30	6	10	21
K	(MG/L)	4.1	2.8	6.8	1.0	3.4	5.6
TAL	(MG/L HCO,	106	31	203	42	73	149
CL	(MG/L)	6	4	21	4	5	10
SO4	(MG/L)	12	<2	63	14	9	29
F	(MG/L)	0.3	0.1	0.5	0.1	0.2	0.4
SI	(MG/L)	8.0	6.0	9.5	1.0	7.3	9.1
NO ₃	(MG/L N)	0.27	<0.02	3.29	0.73	0.03	1.04
PO,	(MG/L P)	0.043	0.006	0.307	0.071	0.015	0.129

) - HD 주문에 1대	CE PROBABILITY F MAL DISTRIBUTIO	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.0982	(σ _ι) 0.0755
2	(µ ₂) 5.1210	(σ_2) 0.3486
PROPORTI	ONALITY FACTOR (x)	= .1713

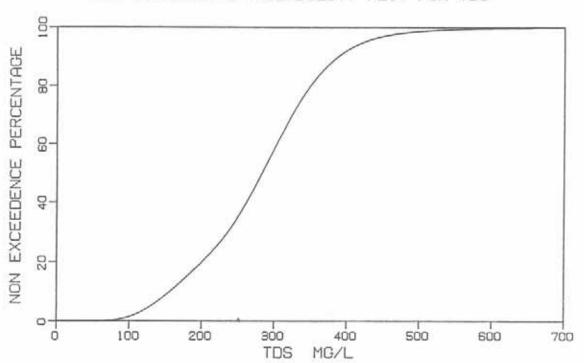
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: HOL SPRUIT AT DAVIDSDALE

LATITUDE: 27°39'00" S LONGITUDE 28°52'00" E


TYPE: RIVER SECTION

	SAM	PLING INFO	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	78/10/29	5 TO 86/09	9/16
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	190	161	87	74	1.18

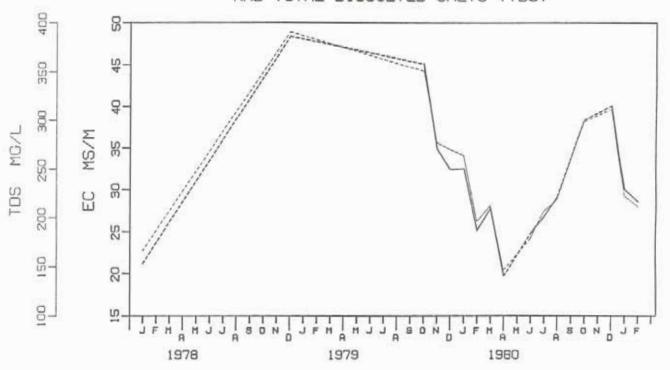

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.4	6.4	8.0	0.4	7.0	7.7
EC	(MS/M)	35.9	6.0	90.6	11.6	28.0	49.8
TDS	(MG/L)	279	114	491	92	214	410
CA	(MG/L)	28	11	46	9	22	41
MG	(MG/L)	13	6	26	6	10	24
NA	(MG/L)	25	8	46	9	18	37
K	(MG/L)	3.4	2.6	6.6	0.8	3.1	4.5
TAL	(MG/L HCO3	183	26	328	70	132	278
CL	(MG/L)	8	4	26	4	6	13
SO,	(MG/L)	9	<2	23	4	7	15
F	(MG/L)	0.5	0.2	0.7	0.1	0.4	0.6
SI	(MG/L)	7.0	1.0	10.5	2.4	4.3	9.2
NO.	(MG/L N)	0.08	<0.02	2.34	0.34	0.02	0.46
PO ₄	(MG/L P)	0.010	<0.005	0.074	0.017 <	0.005	0.039

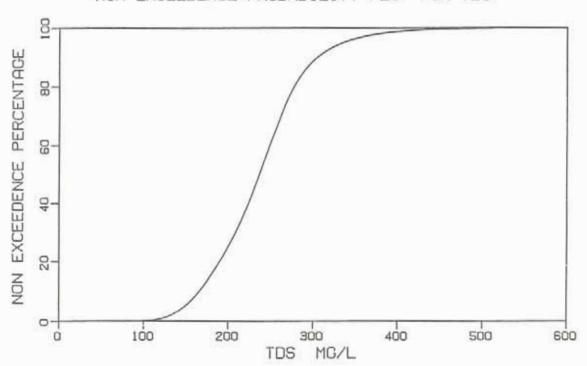
	CE PROBABILITY MAL DISTRIBUT	PLOT FOR TDS ION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m _t) 5.3767	(σ _ι) 0.4194
2	(m ₂) 5.7428	(σ ₂) 0.1803
PROPORTI	ONALITY FACTOR (∝) = .4591

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: LIEBENBERGSVLEI RIVER AT ROODEKRAAL

LATITUDE: 27°41'15" S LONGITUDE 28°22'45" E


TYPE: STORAGE WEIR

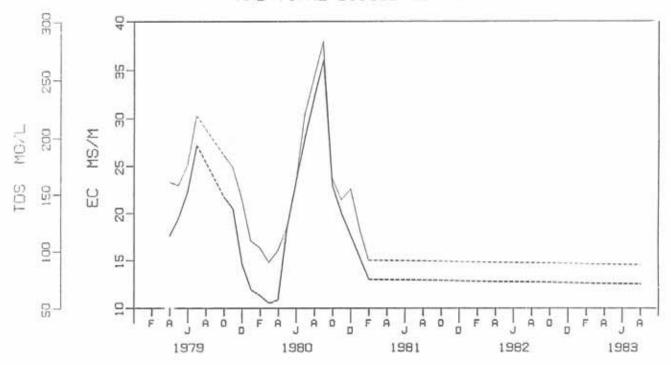

	SAM	PLING INFO	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	78/01/01	TO 81/02	2/19
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	47	44	34	10	3.40

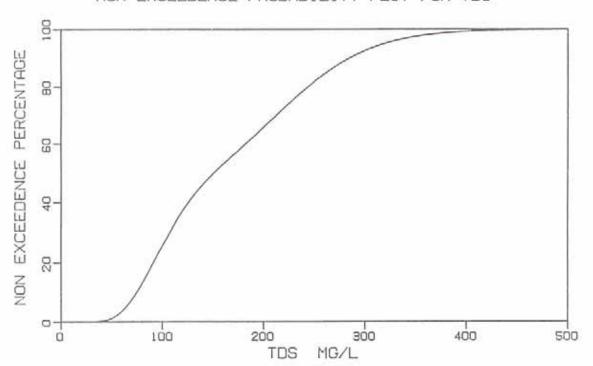
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.0	5.5	7.7	0.5	6.7	7.4
EC	(MS/M)	30.1	19.1	45.7	6.5	26.2	37.5
TDS	(MG/L)	237	131	356	55	205	311
CA	(MG/L)	23	14	36	5	20	28
MG	(MG/L)	9	6	16	2	8	13
NA	(MG/L)	24	15	42	7	19	35
K	(MG/L)	6.0	4.9	8.0	0.8	5.5	7.1
TAL	(MG/L HCO,	142	62	221	37	121	194
CL	(MG/L)	11	5	26	5	8	18
SOA	(MG/L)	13	<2	27	6	11	22
F "	(MG/L)	0.4	0.2	0.5	0.1	0.3	0.5
SI	(MG/L)	5.1	2.6	6.8	0.9	4.6	5.8
NO ₃	(MG/L N)	0.11	<0.02	0.84	0.18	0.04	0.39
PO ₄	(MG/L P)	0.025	<0,005	0.094	0.020	0.011	0.058

	ICE PROBABILITY F RMAL DISTRIBUTIO	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 5.4058	(σ _i) 0.2739
2	(m ₂) 5.5272	(0,) 0.1044

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: WILGE RIVER AT KIMBERLEY


LATITUDE: 27"18'00" S LONGITUDE 28"29'45" E


	SAM	1PLING INF	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	79/04/30	TO 83/0	3/23
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	79	79	39	40	0.98

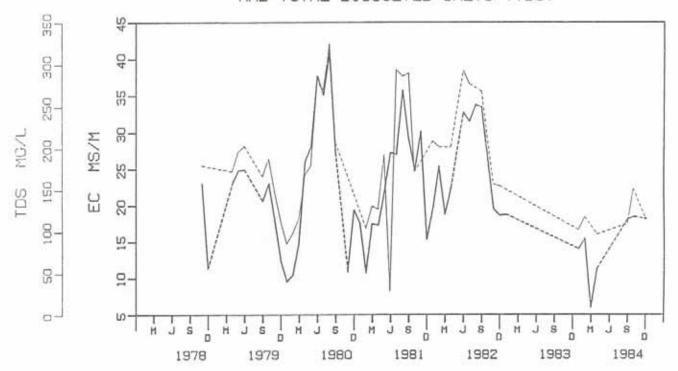
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.9	5.5	7.8	0.5	6.6	7.4
EC	(MS/M)	18.8	2.3	38.6	7.7	13.8	30.9
TDS	(MG/L)	152	69	303	56	113	244
CA	(MG/L)	15	5	35	8	10	30
MG	(MG/L)	7	2	17	3	5	13
NA	(MG/L)	11	4	23	4	9	17
K	(MG/L)	3.1	2.1	6.6	1.0	2.6	4.7
TAL	(MG/L HCO ₃) 88	30	206	44	56	163
CL	(MG/L)	6	<3	16	3	4	9
SO_4	(MG/L)	8	<2	37	7	6	21
F	(MG/L)	0.2	0.1	0.4	0.1	0.2	0.3
SI	(MG/L)	5.6	1.9	6.9	1.0	5.0	6.4
NOa	(MG/L N)	0.08	<0.02	3.75	0.66	0.03	0.87
PO ₄	(MG/L P)	0.024	<0.005	0.136	0.033	0.010	0.076

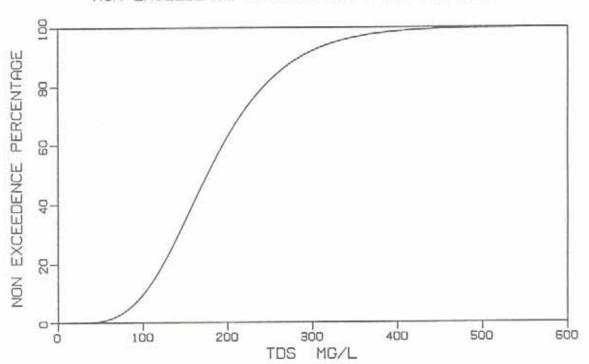
MIXED LOG-NOR	MAL DISTRIBUTI	ON PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.0137	(ơ _i) 0.3763
2	(m ₂) 4.6640	(0,) 0.0316

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC) AND TOTAL DISSOLVED SALTS (TDS)

NAME: MEUL RIVER AT KAFFERSTAD

LATITUDE: 28°01'30" S LONGITUDE 28°59'45" E


TYPE: RIVER SECTION

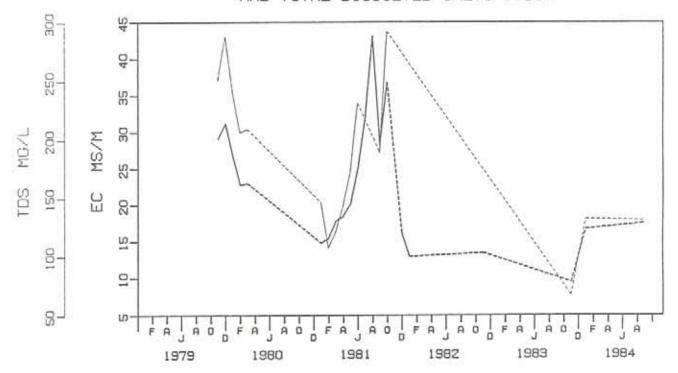

	SAM	PLING INFO	ORMATION		
TOTAL	PERIOD OF	SAMPLING:	78/11/02	TO 86/10	0/21
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	181	141	67	74	0.91

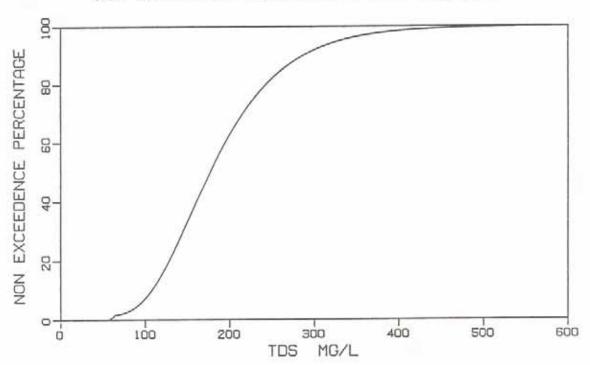
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.2	4.3	8.0	0.5	6.8	7.6
EC	(MS/M)	23.9	3.1	51.3	9.4	17.6	35.6
TDS	(MG/L)	182	28	339	72	131	288
CA	(MG/L)	18	< 1	33	8	12	30
MG	(MG/L)	7	< 1	15	3	5	12
NA	(MG/L)	17	5	54	1 1	13	30
K	(MG/L)	3.0	<0.3	6.4	1.1	2.8	5.0
TAL	(MG/L HCO a	103	9	214	52	75	188
CL	(MG/L)	8	<3	25	5	5	15
SO ₄	(MG/L)	7	3	36	7	6	17
F	(MG/L)	0.3	0.1	0.7	0.1	0.2	0.4
SI	(MG/L)	4.5	1.4	9.0	1.8	3.1	6.4
EON	(MG/L N)	0.07	<0.02	5.65	0.69	0.02	0.63
PO ₄	(MG/L P)	0.025	<0.005	0.207	0.037	0.013	0.087

	CE PROBABILITY P MAL DISTRIBUTION	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 4.7971	(0,) 0.4294
2	(m ₂) 5.2422	(o ₂) 0.3514
	ONALITY FACTOR (¢) =	

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: MIDDEL SPRUIT AT MIDDELSPRUIT


LATITUDE: 28°04'30" S LONGITUDE 28°42'00" E

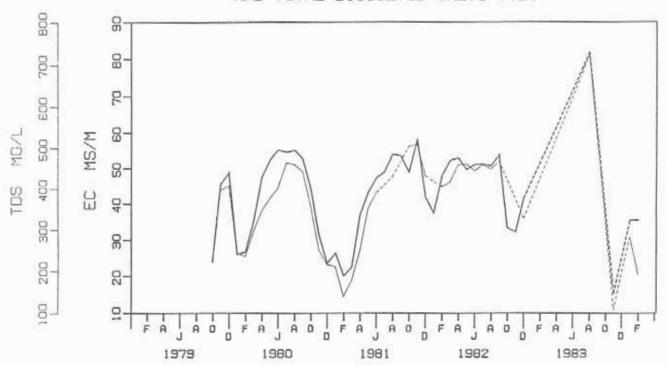

	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF SAMPLING:		79/11/29 TO 84/09/19		
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	46	44	26	18	1.44

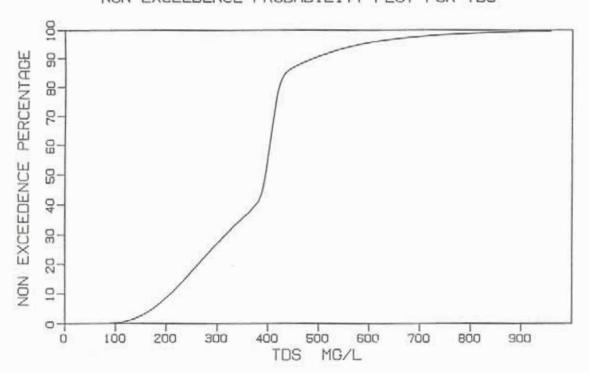
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.7	6.0	7.4	0.4	6.5	7.2
EC	(MS/M)	19.9	8.2	43.1	8.2	17.6	33.9
TDS	(MG/L)	192	67	329	70	142	263
CA	(MG/L)	13	3	23	5	9	18
MG	(MG/L)	5	2	10	2	4	8
NA	(MG/L)	23	12	51	12	16	44
K	(MG/L)	7.3	2.8	19.9	3.7	5.0	9.7
TAL	(MG/L HCO ,	78	18	200	47	59	148
CL	(MG/L)	10	6	25	5	8	18
SO ₄	(MG/L)	14	<2	83	18	8	31
F	(MG/L)	0.3	0.1	0.7	0.1	0.2	0.5
SI	(MG/L)	6.3	2.0	10.4	2.2	4.3	8.4
NO.	(MG/L N)	0.18	<0.02	4.11	0.94	0.05	0.79
PO ₄	(MG/L P)	0.065	0.013	0.456	0.105	0.033	0.226

	CE PROBABILITY F RMAL DISTRIBUTION		
COMPONENT DISTRIBUTION	MEAN	ST	D DEV
1	(µ ₁) 4.1290	(o ₁)	0.0173
2	(u ₂) 5.1816	(o ₂)	0.3716

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: VAALBANK SPRUIT AT RUSTKOP


LATITUDE: 28°08'00" S LONGITUDE 28°45'45" E


	SAM	PLING INFO	ORMATION	J	
TOTAL PERIOD OF SAMPLING: 79/10/24 TO 85/01/29					1/29
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	134	130	57	73	0.78

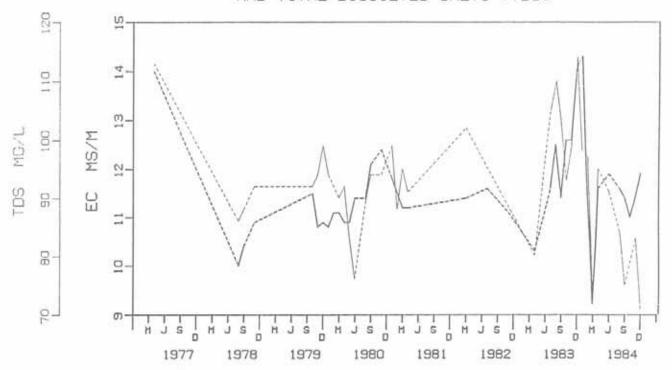
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.5	6.2	8.5	0.5	7.0	8.0
EC	(MS/M)	49.0	13.2	82.0	12.4	36.8	56,2
TDS	(MG/L)	382	108	724	119	277	470
CA	(MG/L)	22	6	33	6	17	27
MG	(MG/L)	11	3	15	3	8	12
NA	(MG/L)	70	12	154	29	37	92
K	(MG/L)	5.3	2.6	13.3	1.9	3.7	7.2
TAL	(MG/L HCO _a	233	21	480	88	164	318
CL	(MG/L)	13	5	29	5	11	21
SO4	(MG/L)	9	<2	43	8	7	22
F	(MG/L)	0.6	0.2	1.5	0.2	0.4	0.8
SI	(MG/L)	2.7	<0.4	8.4	2.7	0.7	7.2
NO _a	(MG/L N)	0.06	<0.02	2.14	0.41	0.03	0.76
PO4	(MG/L P)	0.016	<0.005	0.157	0.034	0.006	0.069

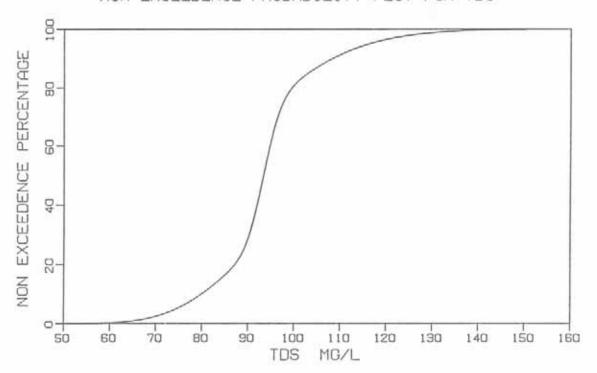
	CE PROBABILITY P MAL DISTRIBUTION			
COMPONENT DISTRIBUTION MEAN		STD DEV		
1	(m _i) 5.7613	(σ ₁) 0.4366		
2	(m ₂) 6.0045	(σ_2) 0.0316		
PROPORTI	ONALITY FACTOR («) =	. 6065		

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: STERKFONTEIN DAM: NEAR DAM WALL

LATITUDE: 28°23'15" S LONGITUDE 29°01'00" E


TYPE: SAMPLING POINT IN DAM BASIN


	SAM	PLING INFO	ORMATION	١	
TOTAL	PERIOD OF	SAMPLING:	77/04/29	5 TO 86/08	3/13
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	69	26	15	1 1	1.36

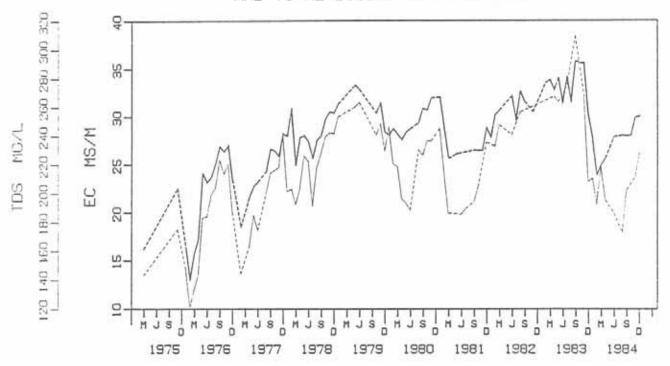
		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	6.9	6.0	7.6	0.5	6.4	7.4
EC	(MS/M)	11.4	10.3	14.1	0.8	11.1	12.6
TDS	(MG/L)	94	76	114	9	90	105
CA	(MG/L)	10	3	14	2	10	12
MG	(MG/L)	4	3	5	0	4	5
NA	(MG/L)	5	3	8	1	5	7
K	(MG/L)	2.0	1.2	3.0	0.4	1.9	2.4
TAL	(MG/L HCO3) 58	38	66	7	55	64
CL	(MG/L)	3	<3	11	2	<3	6
SO4	(MG/L)	5	<2	14	3	3	10
F	(MG/L)	0.2	0.1	0.3	0.0	0.1	0.2
SI	(MG/L)	5.0	4.0	8.6	0.9	4.7	5.7
NO ₃	(MG/L N)	0.08	<0.02	0.75	0.20	0.04	0.46
PO ₄	(MG/L P)	0.009	<0.005	0.030	0.008	0.005	0.021

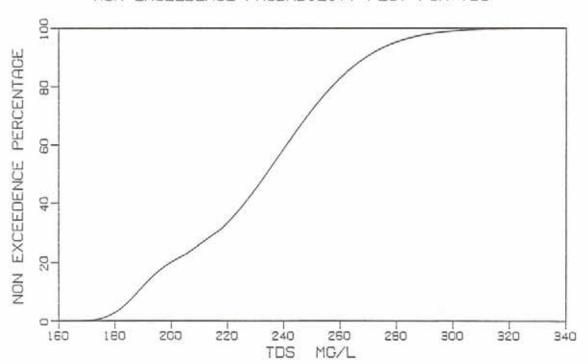
MIXED LOG-NOR	MAL DISTRIBUTI	ON PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ _i) 4.5324	(σ ₁) 0.1653
2	(m ₂) 4.5381	(0,) 0.0316

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

NAME: SAULSPOORT DAM: NEAR DAM WALL

LATITUDE: 28'13'00" S LONGITUDE 28'21'45" E


TYPE: SAMPLING POINT IN DAM BASIN


SAMPLING INFORMATION					
TOTAL	PERIOD OF	SAMPLING:	75/03/20	TO 86/10	0/08
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	123	46	24	22	1.09

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.4	5.4	8.0	0.5	7.0	7.8
EC	(MS/M)	30.4	23.1	35.7	2.7	28.4	33.7
TDS	(MG/L)	235	185	309	30	212	267
CA	(MG/L)	29	24	34	3	26	32
MO	(MG/L)	10	8	13	1	9	12
NA	(MG/L)	18	13	24	2	16	20
K	(MG/L)	4.1	3.5	5.5	0.5	3.9	5.1
TAL	(MG/L HCO,	153	109	191	23	135	176
CL	(MG/L)	6	3	16	3	5	10
SOA	(MG/L)	11	3	38	6	8	15
F	(MG/L)	0.4	0.2	0.6	0.1	0.4	0.6
SI	(MG/L)	1.8	<0.4	4.8	1.2	0.9	3.5
NO.	(MG/L N)	0.09	<0.02	6.50	1.31	0.02	0.75
PO4	(MG/L P)	0.010	<0.005	0.213	0.044	0,006	0.066

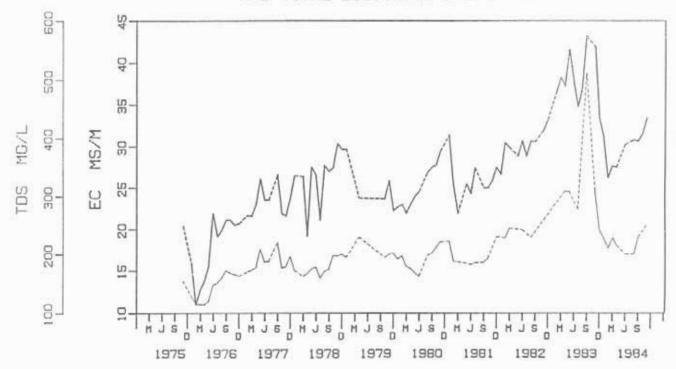
		PLOT FOR TDS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m _i) 5.2376	(ơ ₁) 0.0420
2	(µ ₂) 5.4836	(J ₂) 0.0958
PROPORTI	ONALITY FACTOR (¤	:) = .1939

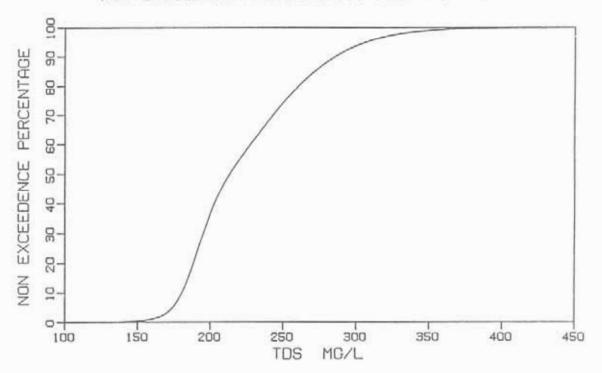
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C8R0501

NAME: LOCH ATHLONE DAM: NEAR DAM WALL

LATITUDE: 28°15'00" S LONGITUDE 28°18'30" E


TYPE: SAMPLING POINT IN DAM BASIN


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/11/19	9 TO 86/10	0/08
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	120	47	25	22	1.14

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.3	6.4	8.0	0.4	7.0	7.5
EC	(MS/M)	28.8	21.9	43.2	5.7	24.8	37.4
TDS	(MG/L)	202	162	512	64	188	299
CA	(MG/L)	19	16	29	3	18	25
MG	(MG/L)	8	6	15	2	8	12
NA	(MG/L)	21	16	43	6	19	35
K	(MG/L)	6.1	3.7	8.1	1.1	5.1	7.7
TAL	(MG/L HCO3	129	95	226	33	112	192
CL	(MG/L)	9	4	21	4	7	16
SO4	(MG/L)	10	2	174	29	7	19
F	(MG/L)	0.4	0.2	0.6	0.1	0.3	0.5
SI	(MG/L)	4.1	<0.4	7.1	1.9	2.8	6.4
NO _a	(MG/L N)	0.20	<0.02	4.49	1.00	0.04	1.60
PO ₄	(MG/L P)	0.027	0.006	0.200	0.044	0.019	0.107

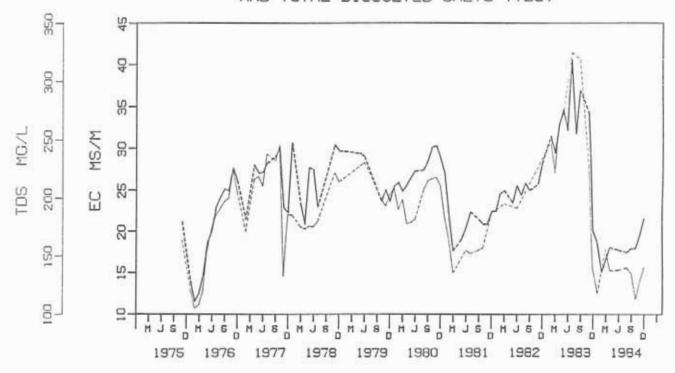
	CE PROBABILITY F RMAL DISTRIBUTIO	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.4632	(σ _i) 0.1792
2	(μ_z) 5.2520	(σ_2) 0.0592
PROPORT I	ONALITY FACTOR (c)	

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

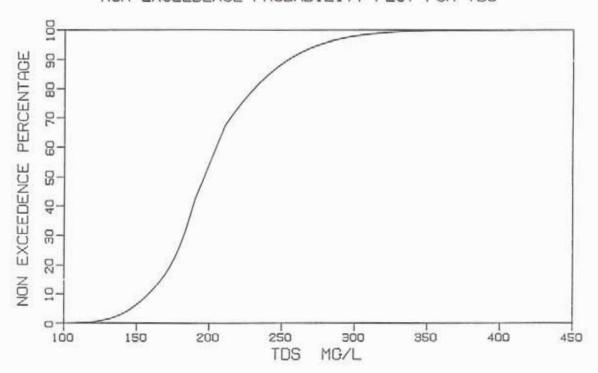
STATION NUMBER: C8R0601

NAME: GERRANDS DAM: NEAR DAM WALL

LATITUDE: 28°17'00" S LONGITUDE 28°17'30" E


TYPE: SAMPLING POINT IN DAM BASIN

	SAM	PLING INFO	DRMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/11/19	9 TO 86/10	0/08
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	115	47	25	22	1.14


		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.3	6.4	7.8	0.3	7.0	7.5
EC	(MS/M)	25.6	17.6	40.5	4.8	23.5	32.3
TDS	(MG/L)	199	135	324	43	180	258
CA	(MG/L)	20	14	28	3	18	25
MG	(MG/L)	8	5	13	1	7	10
NA	(MG/L)	21	13	40	5	18	26
K	(MG/L)	6.6	5.5	8.6	0.9	6.0	7.9
TAL	(MG/L HCO ,	120	72	209	28	104	157
CL	(MG/L)	7	5	16	3	7	14
SO ₄	(MG/L)	12	<2	44	7	10	19
F	(MG/L)	0.4	0.3	0.6	0.1	0.3	0.6
SI	(MG/L)	2.6	<0.4	7.0	1.2	2.0	3.7
NO _a	(MG/L N)	0.20	<0.02	2.31	0.42	0.09	0.60
PO ₄	(MG/L P)	0.026	<0.005	0.139	0.027	0.015	0.060

		Y PLOT FOR TDS TION PARAMETERS
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(µ ₁) 5.3012	(ơ ₁) 0.2057
2	(µ ₂) 5.2447	(o ₂) 0.0469

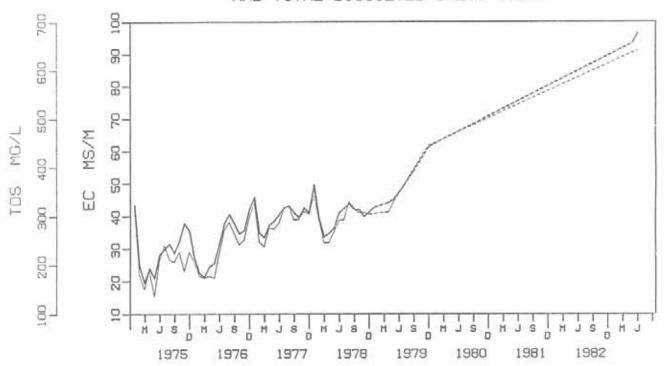
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

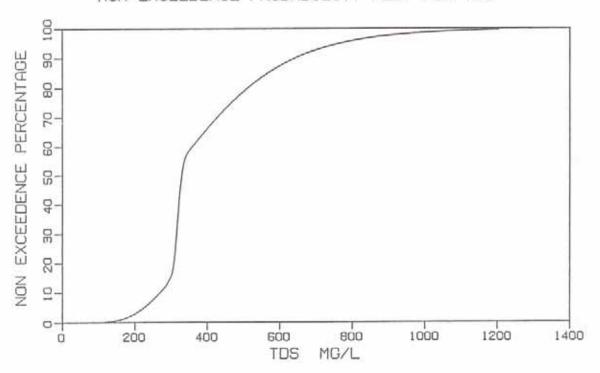
NON EXCEEDENCE PROBABILITY PLOT FOR TDS

STATION NUMBER: C9MO9

NAME: VAAL RIVER AT DE HOOP

LATITUDE: 28°31'00" S LONGITUDE 24°36'00" E


TYPE: GAUGING WEIR


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF SAMPLING:		71/12/09 TO 83/06/14		
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	337	26	9	17	0.53

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.4	7.3	7.5	0.1	7.4	7.5
EC	(MS/M)	47.9	42.0	97.4	17.8	45.2	93.3
TDS	(MG/L)	388	309	640	152	325	581
CA	(MG/L)	37	32	53	9	34	49
MG	(MG/L)	23	17	45	13	18	40
NA	(MG/L)	39	29	78	23	30	69
K	(MG/L)	7.8	5.3	10.6	2.9	5.4	10.5
TAL	(MG/L HCO3	1 145	131	148	8	139	148
CL	(MG/L)	32	22	69	22	23	60
SO4	(MG/L)	99	61	252	89	66	216
F	(MG/L)	0.5	0.4	0.6	0.1	0.5	0.6
SI	(MG/L)	1.1	<0.4	1.3	0.4	0.8	1.3
NO ₃	(MG/L N)	0.05	<0.02	0.08	0.03	0.04	0.07
PO ₄	(MG/L P)	0.013	<0.005	0.022	0.011	0.007	0.020

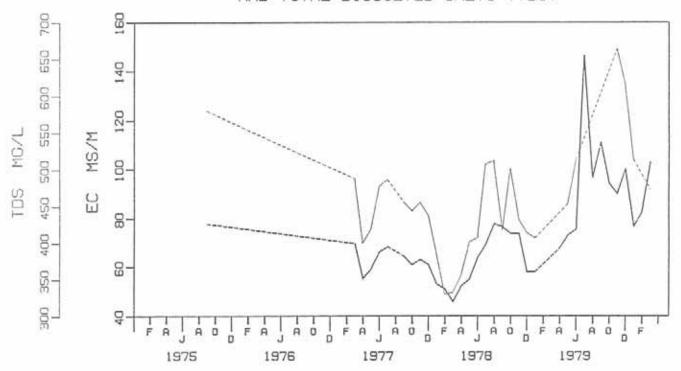
	PLOT FOR TDS
MEAN	STD DEV
(m ₁) 6.0289	(o _i) 0.4317
(µ ₂) 5.7662	(0,) 0.0316
	MAL DISTRIBUT MEAN (4,) 6.0289

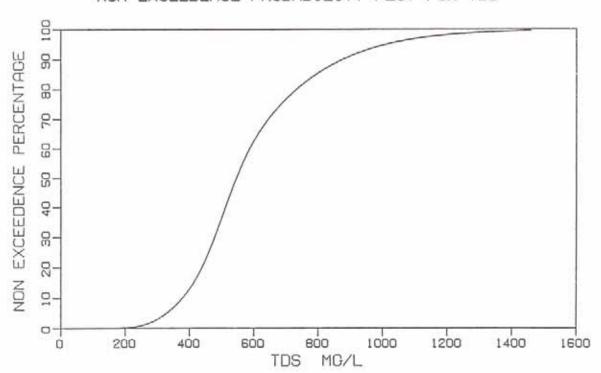
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C9M10

NAME: VAAL RIVER AT MOZIB (GAMAGARA)

LATITUDE: 28°24'15" S LONGITUDE 24°16'15" E


TYPE: RIVER SECTION


	SAM	IPLING INFO	ORMATION	J	
TOTAL	PERIOD OF	SAMPLING:	75/09/08	3 TO 80/03	3/31
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	280	40	26	14	1.86

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.6	7.4	7.9	0.2	7.5	7.8
EC	(MS/M)	82.5	45.0	146.5	23.5	72.5	120.3
TDS	(MG/L)	513	406	664	91	463	634
CA	(MG/L)	42	35	45	4	38	44
MG	(MG/L)	34	25	43	6	32	40
NA	(MG/L)	59	45	84	13	55	76
K	(MG/L)	6.9	6.2	10.1	1.4	6.2	8.5
TAL	(MG/L HCO ₃	164	112	270	48	158	218
CL	(MG/L)	64	47	110	21	58	91
SO4	(MG/L)	110	80	194	41	100	173
F	(MG/L)	0.6	0.5	0.6	0.0	0.5	0.6
SI	(MG/L)	1.3	0.8	1.8	0.3	1.2	1.7
NOa	(MG/L N)	0.03	<0.02	0.06	0.02	0.02	0.05
PO ₄	(MG/L P)	0.005	<0.005	0.011	0.003 <	0.005	0.010

	CE PROBABILITY MAL DISTRIBUTI	
COMPONENT DISTRIBUTION	MEAN	STD DEV
1	(m ₁) 6.3570	(ơ _i) 0.3703
2	(µ ₂) 6.2423	(o ₂) 0.1196
PROPORTI	ONALITY FACTOR (∝) = .7715

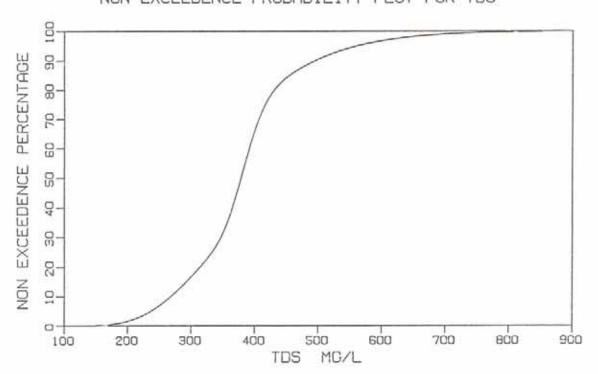
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C9R0101

NAME: VAALHARTS DAM: NEAR DAM WALL

LATITUDE: 28*07'00" S LONGITUDE 24*55'45" E

TYPE: SAMPLING POINT IN DAM BASIN


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	75/10/27	7 TO 84/0	4/02
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	463	34	16	18	0.89

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	8.0	6.3	8.2	0.6	7.7	8.1
EC	(MS/M)	54.6	29.4	70.0	9.7	44.3	66.4
TDS	(MG/L)	378	208	464	59	307	439
CA	(MG/L)	37	17	49	6	32	43
MG	(MG/L)	23	10	29	4	19	28
NA	(MG/L)	37	27	49	6	29	43
K	(MG/L)	6.4	5.3	9.2	1.1	5.7	8.1
TAL	(MG/L HCO3	139	105	166	14	128	147
CL	(MG/L)	24	16	44	8	21	35
SO4	(MG/L)	102	4	164	33	73	137
F	(MG/L)	0.5	0.3	0.6	0.1	0.4	0.5
SI	(MG/L)	0.5	<0.4	7.1	1.2	<0.4	0.8
NO ₃	(MG/L N)	0.03	<0.02	0.09	0.03	0.02	0.09
PO ₄	(MG/L P)	0.008	<0.005	0.047	0.008	0.006	0.017

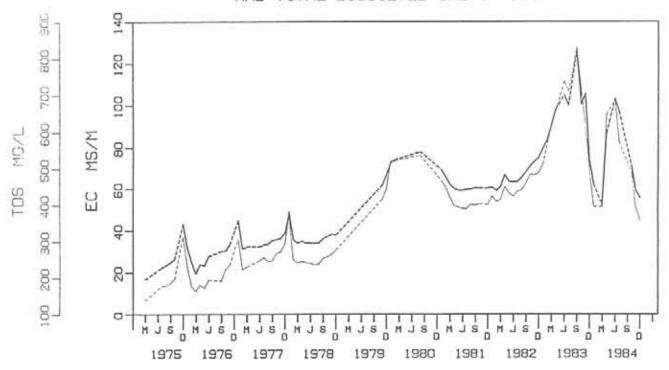
	CE PROBABILITY MAL DISTRIBUT:	PLOT FOR TOS						
COMPONENT MEAN STD DEV								
1	(m _t) 5.9526	(o,) 0.0656						
2	(M ₂) 5.8983	(σ_2) 0.3045						
PROPORTI	ONALITY FACTOR (∝) = .3633						

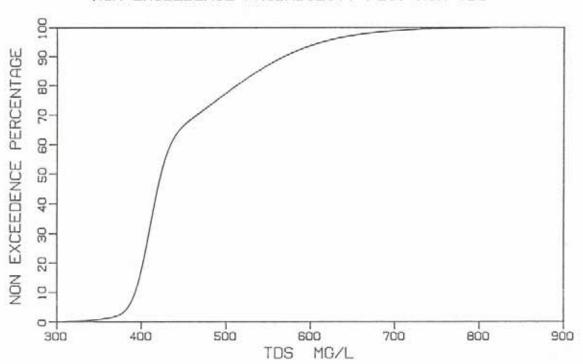
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C9R0201

NAME: BLOEMHOF DAM: NEAR DAM WALL

LATITUDE: 27°40'15" S LONGITUDE 25°37'00" E


TYPE: SAMPLING POINT IN DAM BASIN


	SAM	PLING INFO	ORMAT I ON	1	
TOTAL	PERIOD OF	SAMPLING:	71/03/03	3 TO 84/1:	2/19
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	451	211	111	100	1.11

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DEV	25 PERCENTILE	90 PERCENTILE
PH	(PH UNITS)	7.8	6.6	9.9	0.4	7.6	8.2
EC	(MS/M)	62.6	57.8	126.6	10.9	60.2	81.0
TDS	(MG/L)	421	279	829	75	403	524
CA	(MG/L)	46	23	88	6	44	54
MG	(MG/L)	26	21	56	6	24	34
NA	(MG/L)	41	36	124	11	39	53
K	(MG/L)	7.8	6.5	13.8	1.2	7.1	8.9
TAL	(MG/L HCO3	131	90	327	19	120	147
CL	(MG/L)	37	17	122	14	34	62
SO4	(MG/L)	129	25	385	44	122	194
F	(MG/L)	0.6	0.3	0.9	0.1	0.5	0.7
SI	(MG/L)	<0.4	<0.4	1.9	0.4	<0.4	1.1
NOa	(MG/L N)	0.02	<0.02	0.85	0.09	<0.02	0.10
PO ₄	(MG/L P)	0.016	<0.005	0.094	0.013	0.011	0.030

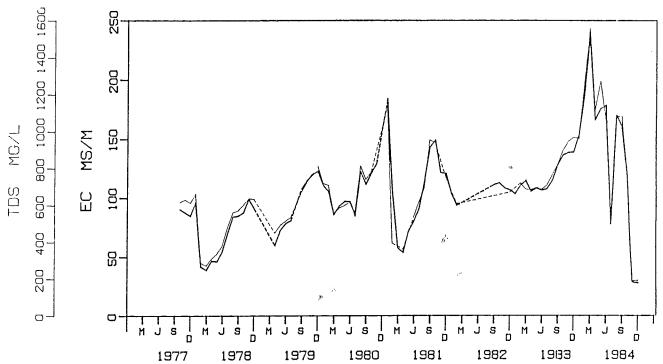
	CE PROBABILITY RMAL DISTRIBUTI							
COMPONENT MEAN STD DEV								
1	(µ ₁) 6.2142	(o _i) 0.1679						
2	(μ_z) 6.0183	(σ_2) 0.0387						
PROPORTI	ONALITY FACTOR (∝) = .4497						

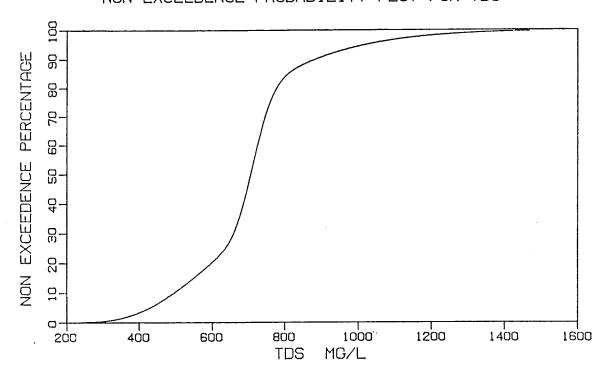
TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC)
AND TOTAL DISSOLVED SALTS (TDS)

STATION NUMBER: C9R0301

NAME: DOUGLAS DAM: NEAR DAM WALL

LATITUDE: 29°02'30" S LONGITUDE 23°50'15" E


TYPE: SAMPLING POINT IN DAM BASIN


	SAM	PLING INFO	ORMATION	1	
TOTAL	PERIOD OF	SAMPLING:	77/10/03	3 TO 84/12	2/03
	TOTAL	1979-1983	SUMMER	WINTER	RATIO
SAMPLES	320	161	87	74	1.18

		WATER	QUALITY	STAT	ISTICS		
DETE	ERMINAND	MEDIAN	MIN	MAX	STD DE	V 25 PERCENTILE	90 PERCENTIL
PH	(PH UNITS)	7.6	6.5	8.1	0.4	7.3	7.9
EC	(MS/M)	109.0	22.8	194.7	24.9	99.8	138.5
TDS	(MG/L)	685	163	1137	155	566	889
CA	(MG/L)	45	19	69	8	41	54
MG	(MG/L)	43	9	77	11	38	58
NA	(MG/L)	99	11	185	29	78	128
K	(MG/L)	7.5	0.9	12.0	1.9	6.4	11.2
TAL	(MG/L HCO3	169	93	265	30	153	208
CL	(MG/L)	110	8	257	44	88	170
SO4	(MG/L)	183	15	371	63	140	247
F	(MG/L)	0.6	0.2	0.8	0.1	0.5	0.7
SI	(MG/L)	1.2	<0.4	8.3	1.1	0.8	2.0
NO3	(MG/L N)	0.05	<0.02	1.00	0.21	<0.02	0.31
PO4	(MG/L P)	0.006	<0.005	0.116	0.015 <	<0.005	0.017

NON EXCEEDENG MIXED LOG-NOR				
COMPONENT DISTRIBUTION	ME	:AN	ST	D DEV
ĭ	(µ ₁) E	5.4931	(σ_i)	0.3295
2	(µ ₂) E	5.5721	(σ_2)	0.0592
PROPORTI	ONALITY FA	CTOR (∝)	= .5256	

TEMPORAL VARIATION OF ELECTRICAL CONDUCTIVITY (EC) AND TOTAL DISSOLVED SALTS (TDS)

APPENDIX B: BIBLIOGRAPHY OF MAJOR LITERATURE PERTAINING TO THE VAAL RIVER CATCHMENT.

BIBL10GRAPHY

- BRUWER, C.A., VAN VLIET, H.R., SARTORY, D.P. and KEMPSTER, P.L.

 (1985) An assessment of water related problems of the Vaal
 River between Barrage and Douglas Weir. Technical Report
 TR 121. Department of Water Affairs, Pretoria.
- CHUTTER, F.M. (1967) Hydrobiological studies of the Vaal River.

 NIWR, CSIR Special Report WAT 38 (in two parts). Council
 for Scientific and Industrial Research, Pretoria.
- DEPARTMENT OF WATER AFFAIRS (1982) Industriele en huishoudelike wateronttrekking uit die Vaalrivier tot die jaar 2030. Report No. VW 010. Department of Water Affairs, Pretoria.
- DEPARTMENT OF WATER AFFAIRS (1987) Report on the Management of South African Water Resources. Department of Water Affairs, Pretoria, (in press).
- HASSETT, A.J., VILJOEN, P.T. and LIEBENBERG, J.J.E. (1987) An assessment of chlorinated pesticides in the major surface water resources of the Orange Free State during the period September 1984 to September 1985. Water SA. (in press).
- MIDDLETON, B.E., PITMAN, W.V. and MIDGLEY, D.C. (1981) Surface
 Water Resources of South Africa, Vol. II. Drainage region
 C. The Vaal Basin. Report No. 8/81. Hydrological
 Research Unit, University of the Witwatersrand,
 Johannesburg.
- RAND WATER BOARD. (1970-1984) Annual Reports. RWB, Johannesburg.
- STANDER, G.L. MALAN, W.C. and HENZEN, M.R. (1962) The chemical quality of the water of the Vaal River between the Barrage and Kimberley, NIWR, CSIR Report W 14. Council for Scientific and Industrial Research, Pretoria.

- VAN EEDEN, O.R. (1972) Geology of the Republic of South Africa.

 An explanation of the 1:2000000 map, 1970 edition. Special Publication 18, Department of Mines, Geological Survey, Pretoria.
- VAN STEENDEREN, R.A., THERON, S.J. and HASSETT, A.J. (1986) Organic micropollutants in the Vaal River. Paper presented at the Symposium on: The Vaal River Ecosystem: Status and Problems. March 1986. CSIR, Pretoria.

APPENDIX C: STATIONS IN THE VAAL RIVER CATCHMENT.

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C1H01	VAAL RIVER AT STANDERTON	26-56-30	29-16-00	398	75-10-13	86-12-31
C1H05	LEEU SPRUIT AT WELBEDACHT	26-51-15	29-19-30	323	74-01-17	86-17-19
21N06	BLESBOK SPRUIT AT RIETVLEY	26-46-30	29-32-30	447	74-01-17	86-12-31
1407	VAAL RIVER AT UITSPANNING	26-50-30	29-43-15	407	74-01-16	86-12-31
1901A	RAINGAUGE AT LEEUKOP (BULK PRECIPITATION	26-29-50	29-29-47	50	85-09-28	86-10-07
19018	RAINGAUGE AT LEEUKOP (WET ONLY PRECIPTN)	26-29-50	29-29-47	0		
1002A	RAINGAUGE AT HENDRIKSPAN (BULK PRECIPTN)	26-38-50	29-31-25	41	85-09-01	86-10-07
14028	RAINGAUGE AT HENDRIKSPAN (WET ONLY PPTN)	26-38-50	29-31-25	1	PG-60-68	86-06-01
21003A	RAINGAUGE AT TOPFONTEIN (BULK PRECIPTM)	26-38-55	29-19-56	57	85-09-03	86-10-0B
10038	RAINGAUGE AT TOPFONTEIN (WET ONLY PPTN)	26-38-55	29-19-56	19	85-11-10	86-09-11
1905A	RAINGAUGE AT WITBANK (BULK PRECIPITATION	26-47-09	29-29-40	53	85-08-31	86-10-07
14058	RAINGAUGE AT WITBANK (WET ONLY PRECIPTH)	26-47-09	29-29-40	0		
1908A	RAINGAUGE AT LANGSPRUIT (BULK PRECIPITN)	27-00-38	29-26-13	44	85-08-31	86-08-05
1802T	GROOTDRAAI DAM:SASOL CANAL	26-25-00	29-17-45	42	79-04-18	81-05-05
1R02W	GROOTDRAAI DAM: DOWN STREAM WEIR	26-25-00	29-17-45	39	79-10-23	85-11-27
180201	GROOTDRAAI DAM: NEAR DAM WALL	26-55-D0	29-17-45	46	92-11-18	86-11-26
C1R0205	GROOTDRAAI DAM = POINT IN DAM	26-55-00	29~17-45	1	86-04-09	86-04-09
CH	EMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL		STATIONS IN	DRAINAGE REGION	C12 (0312)
STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C1M03	VAAL RIVER AT VILLIERS	27-00-30	28-37-30	62	75-11-16	86-03-03
1M03F	VAAL RIVER AT VILLIERS	27-01-00	28-36-00	91	84-11-12	86-12-29
1M04	WATERVAL RIVER AT ROODEBANK	26-37-45	29-01-30	501	75-10-02	86-12-31
CIMOB	WATERVAL RIVER AT ELANDSLAAGTE	26-51-45	28-53-00	183	75-11-24	86-12-31
C1M09	MOLSPRUIT AT LEEUFONTEIN	26-55-00	28-26-15	216	75-10-20	86-12-29
C1M1D	BANKPLAAS SPRUIT AT SWEET HOME	27-04-30	28-34-00	157	76-10-11	86-12-29
C1H11	VAAL RIVER AT VILLIERS (GROOT DRAAI)	27-01-00	28-38-45	266	76-09-27	84-02-28

STRILLON NOT	STATEON MAIL	CHITTODE	CONGLIGUE	NO. OF MARKINES	LIKSI	CHIEST SHIFEE
C1H03	VAAL RIVER AT VILLIERS	27-00-30	28-37-30	62	75-11-16	86-03-03
C1M03F	VAAL RIVER AT VILLIERS	27-01-00	28-36-00	91	84-11-12	86-12-29
C1M04	WATERVAL RIVER AT ROODEBANK	26-37-45	29-01-30	501	75-10-02	86-12-31
C1MOB	WATERVAL RIVER AT ELANDSLAAGTE	26-51-45	28-53-00	183	75-11-24	86-12-31
C1M09	MOLSPRUIT AT LEEUFONTEIN	26-55-00	28-26-15	216	75-10-20	86-12-29
C1M1D	BANKPLAAS SPRUIT AT SWEET HOME	27-04-30	28-34-00	157	76-10-11	86-12-29
C1H11	VAAL RIVER AT VILLIERS (GROOT DRAAI)	27-01-00	28-38-45	266	76-09-27	84-02-28
C1H12	VAAL RIVER AT NOOITGEDACHT(GLADDEDRIF)	27-00-05	28-45-58	52	85-11-04	86-12-31
C1904A	RAINGAUGE AT CHARL CILLIERS (BULK PPTN)	26-39-33	29-11-19	59	85-09-01	86-10-07
C1004B	RAINGAUGE AT CHARL CILLIERS (WET ONLY PN	26-39-33	29-11-19	0		
C1RO1L	VAAL DAM: WATER LEVEL OF VAAL RIVER	26-53-00	28-07-00	84	78-09-06	86-12-29
C1R01U	VAAL DAM = OUTLET TUNNEL	26-53-00	28-07-00	16	86-06-06	86-11-05
C1R01V	VAAL DAMERWB CANAL	24-53-00	28-07-00	4	86-11-07	B6-12-15
C1R01W	VAAL DAM: DOWN STREAM WEIR	26-53-00	28-07-00	68	82-05-03	B6-11-05
C1R0101	VAAL DAM:NEAR DAM WALL	26-53-00	28-07-00	170	68-04-01	86-12-08
C1R0102	VAAL DAM:POINT IN DAM	26-53-00	28-07-00	95	66-11-24	68-05-15
C1R0103	VAAL DAM:POINT IN DAM	26-53-00	28-07-00	110	66-11-24	86-05-26
C1R0104	VAAL DAM:POINT IN DAM	26-53-00	28-07-00	86	66-11-21	68-05-14
C1R0105	VAAL DAH:POINT IN DAM	26-53-00	28-07-00	16	84-10-12	86-06-26
C1R0104	VAAL DAM:POINT IN DAM	26-53-00	28-07-00	15	84-10-12	86-06-26
C1R0107	VAAL DAM:POINT IN DAM	26-53-00	28-07-00	14	84-10-12	86-06-26
C1WD1 R	VAALDAM PURIFICATION WORKS	26-53-00	28-07-00	69	79-06-15	86-10-28
C1W01 S	VAALDAM PURIFICATION WORKS	26-53-00	28-07-00	46	79-06-15	86-10-28

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C13 (D313)

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
$(x_1, x_2, \dots, x_{n-1}, x_{n-1}, \dots, x_{n-$					the second contact	, which is set in the left of the set on the first δt
C1E168	RAIN GAUGE (BULK PRECIPIT.) AT ERFDEEL	27-43-43	29-30-07	D		
C1M02	KLIP RIVER AT DELANGESDRIFT	27-10-15	29-14-00	342	74-01-06	86-12-31
D1906A	RAINGAUGE AT SPRINGBOK (BULK PRECIPTN)	27-29-30	29-28-48	70	85-09-01	86-10-06

STATION NO	. STATION NAME	LATITUD	E LONGITUDE	NO. OF ANALYSE	S FIRST-	LATEST SAMPLE
C19068 C1907A	RAINGAUGE AT SPRINGBOK (WET ONLY PPTN) RAINGAUGE AT SWARTKOP (BULK PRECIPITN)	27-29-30 27-14-35	29-28-48 29-28-52	0 72	85-09-01	86-10-06
CH	MEMICAL ANALYSES AVAILABLE FOR HYDROLOGICA	L GAUGING	STATIONS IN	DRAINAGE REGION	C21 (D321)	
STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C2M04 C2M70	ZUIKERBOSCHRAND RIVER AT UITVLUGT SUIKERBOSCHRAND RIVER AT PLATKOPPIE	26-40-15 26-38-30	28-01-45 28-13-45	306 88	84-03-22 77-12-21	86-12-22 86-12-29
CF	MEMICAL ANALYSES AVAILABLE FOR HYDROLOGICA	L GAUGING	STATIONS IN	DRAINAGE REGION	622 (0322)	
STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C2H03 C2H05 C2H14 C2H15 C2H21	VAAL RIVER AT ENGELBRECHTSDRIFT RIETSPRUIT AT KAALPLAATS TAAIBOS SPRUIT AT VERDUN KLIP RIVER AT WALDRIFT KLIP RIVER AT WITKOP	26-49-15 26-43-45 26-49-30 26-38-30 26-27-15	28-03-45 27-43-00 27-55-30 27-57-45 28-05-15	105 117 37 97 332	79-04-30 84-03-08 84-11-29 84-03-08 77-12-21	82-02-01 86-12-18 86-12-24 86-12-24
C5H45	LITTLE RIETSPRUIT AT RIETFONTEIN 349	26-24-15	27-36-00	115	84-08-20	88-12-29 86-12-29

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C23 (0323)

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
2801	MOOI RIVER AT WITRAND VAAL RIVER AT LINDEQUESDRIFT	24-39-00	27-05-15	343	79-10-01	86-12-30
C2H08	VAAL RIVER AT LINDEQUESDRIFT	26-44-30	27-35-15	111	75-08-20	86-12-24
2811	GERHARDMINNEBRON EYE AT GERHARDMINNEBRON	26-28-45	27-09-00	140	69-06-06	86-12-01
2M13	TURFFONTEIN EYES AT TURFFONTEIN VAAL RIVER AT SCHOEHANSDRIF WONDERFONTEIN SPRUIT AT LUIPAARDSVLEI	26-24-15	27-10-30	140 135	69-06-06	86-12-01
2M18	VAAL RIVER AT SCHOEHANSDRIF	26-58-15	27-12-45	632 338	72-08-01	86-12-30
32M23	WONDERFONTEIN SPRUIT AT LUIPAARDSVLEI	26-13-30	27-44-30	338	79-05-09	86-12-29
2M24	WONDERFONTEIN SPRUIT AT GEMSBOKFONTEIN	26-17-00	27-40-45	143	80-01-09	86-02-06
2H25	WONDERFONTEIN SPRUIT AT GEMSBOKFONTEIN	26-17-15	27-40-00	98	80-01-10	83-12-29
:2M26	MIDDELVLEI SPRUIT AT MIDDELVLEI	26-14-00	27-40-00	109	79-05-02	86-12-01
2M27	KOCKSOORD SPRUIT AT MIDDELVLEI RIETFONTEIN SPRUIT AT RIETFONTEIN	26-14-00	27-39-00	13	80-01-24	06-12-10
2M28	RIETFONTEIN SPRUIT AT RIETFONTEIN	26-14-45	27-35-30	253	79-05-03	86-12-29
SW30	WONDERFONTEIN EYE AT WONDERFONTEIN EYE	26-18-45	27-29-15	133	78-12-29	86-12-15
2H32	MODIRIVIERLOOP (RIVER) AT WONDERFONTEIN	26-19-00	27-23-30	157	80-02-04	86-10-23
2M44	OBERHOLZER CANAL (SOUTH) AT WONDERFONTEIN	26-20-00	27-23-15	398	79-05-10	86-12-29
2M45	WEST DRIEFONTEIN CANAL SOUTH AT VLAKPLAA	26-20-45	27-25-45	3	80-04-14	80-05-05
2H51	KRAALKOP SPRUIT AT KRAALKOP	26-26-15	27-28-45	132	84-04-09	86-12-29
2M57	WEST DRIEFONTEIN CANAL AT WONDERFONTEIN	26-19-00	27-23-15	186	90-02-04	86-12-15
2H57K	WEST DRIEFONTEIN CANAL SPILL AT WONDERFO	26-19-00	27-23-15	40	80-02-04	86-09-18
2860	DOORNFONTEIN CANAL AT BLAAWBANK WEST DRIEFONTEIN CANAL AT ROOIPOORT MOOIRIVIERLOOP (RIVER) AT BLAAUWBANK	26-22-15	27-15-15	380	69-11-01	86-12-29
2M63	WEST DRIEFONTEIN CANAL AT RODIPOORT	26-20-30	27-25-30	156	80-02-04	86-12-15
2M69	MOOIRIVIERLOOP (RIVER) AT BLAAUWBANK	26-22-30	27-13-45	403	79-05-03	86-12-29
2002	MOOI RIVER AT BRIDGE ON TAAIBOSCHBULT	26-52-00	27-01-30	314	79-09-28	86-08-19
2004	FURROW AT TARRED RD NORTH OF WELVERDIEND	26-21-47	27-16-02	22	81-12-10	86-10-23
2005	HOOIRIVIERLOOP AT RAIL BR WELVERDIEND	26-22-08	27-15-10	46	81-12-10	86-10-23
2006	VENTERSPOST BOREHOLE NO 16	26-17-43	27-39-27	21	81-12-08	85-10-09
2007	VENTERSPOST BOREHOLE JR 4	26-17-30	27-39-07	18	81-12-08	83-10-20
2908	VENTERSPOST WELL NO 1	26-17-22	27-40-15	9	81-12-08	85-08-27
22009	VENTERSPOST WELL NO 4	26-17-30	27-37-00	30	81-12-08	85-04-03
22010	VENTERSPOST SHAFT NO 1	26-16-22	27-38-40	18	81-12-08	84-02-20
STATION NO.	VENTERSPOST BOREHOLE NO 16 VENTERSPOST BOREHOLE JR 4 VENTERSPOST WELL NO 1 VENTERSPOST WELL NO 4 VENTERSPOST SHAFT NO 1 STATION NAME VENTERSPOST SHAFT NO 2	LATITUDE	LONGITUDE	34 36 61 48 46 42 44 47 45 111 3	FIRST-	LATEST SAMPLE
2011	UENTERSPOST SHAFT NO 2	26-17-05	27-38-11	34	81-12-08	85-04-03
2012	WESTONARIA GOLD MINE RECHARGE DAM	26-21-35	27-42-05	36 61 48 46 42 44	81-12-09	
2013	CONFLUENT PT: WEST & EAST DRIEFT. CANALS	26-19-32	27-24-12	61	81-12-09	
2014	CONFLUENT PT: CANAL FROM VENTERSPOST B M	26-19-32	27-24-12	48	B1-12-09	
2015	MIXED WATER OF CANALS C2913814 CONFL PT.	26-17-32	27-24-12	46	81-12-09	
2016	END OF 1M PIPE FROM VENTERSPOST G M	26-19-35	27-24-38	42	81-12-09	
22017	CANAL INTO WHICH 1M PIPE (C2916) DRAINS	26-19-35	27-24-38	44	81-12-09	
2918	CANAL AT INLEY TO NAT RES WONDERFONTEIN	26-19-21	27-21-14	47	81-12-10	
2019	AUTELOU ERAM NATURE RESERVE (CANAL)	26-20-08	27-19-44	45	81-12-10	
2R0101	BOSKOP DAM: NEAR DAM WALL	26-33-45	27-06-30	111	68-06-28	
2R03D	KLERKSKRAAL DAM:RIGHT BANK CAN	26-15-15	27-09-30	3	86-06-30	
2R0301	KLERKSKRAAL DAM:NEGR DAM WALL	26-15-15	27-09-30	15	72-01-12	
2R04C	POTCHEESTROOM DAMELEET BANK CANAL	26-40-15	27-06-00	55	79-08-20	
2R0401	POTCHEESTROOM DAM:NEAR DAM WALL	26-40-15	27-06-00	75	79-10-01	
22R05C	BOSKOP DAM:NEAR DAM WALL KLERKSKRAAL DAM:RIGHT BANK CAN KLERKSKRAAL DAM:NEAR DAM WALL POTCHEFSTROOM DAM:LEFT BANK CANAL POTCHEFSTROOM DAM:NEAR DAM WALL KLIPDRIF DAM:LEFT BANK CANAL KLIPDRIF DAM:NEAR DAM WALL	26-37-00	27-18-00	3	79-12-24	
C2R0501	KLIPDRIF DAM:NEAR DAM WALL	ne ne ne	27-18-00	78	77-10-22	

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL BAUGING STATIONS IN DRAINAGE REGION C24 (0324)

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C2M07	VAAL RIVER AT PILGRIMS ESTATE	27-00-45	26-42-00	342	79-05-29	86-12-29
C2M64	SKOON SPRUIT AT EYE OF SCHOONSPRUIT	26-17-00	26-51-30	62	81-06-11	86-04-17
C2M71	KLIP RIVER AT KOOKFONTEIN	26-37-09	27-58-51	65	85-08-08	86-12-24
C2001	SKOON SPRUIT AT KLERKSDORP WEIR	26-52-30	26-39-30	251	79-08-20	86-12-22
C2003	SKOON SPRUIT AT ORKNEY BRIDGE	26-57-20	26-39-00	180	80-03-34	86-08-18
C2R0201	JOHAN NESSER DAM: NEAR DAM WALL	26-49-00	26-36-30	3	77-04-17	22-04-12
C2R06D	ELANDSKUIL DAM:RIGHT BANK CANAL	26-21-00	26-46-45	5	83-03-11	86-01-22
CZROŚW	ELANDSKUIL DAM: DOWN STREAM WEIR	26-21-00	26-46-45	0		
C2R0601	ELANDSKUIL DAM:NEAR DAM WALL	26-21-00	26-46-45	13	B1-08-11	86-12-03
C2RO7C	RIETSPRUIT DAM:LEFT BANK CANAL	26-24-45	26-48-00	2	83-02-16	83-05-11
C2R0701	RIETSPRUIT DAM:NEAR DAM WALL	26-24-45	26-48-00	25	81-06-11	86-12-03

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
	H-17-17-18-18-18-18-17-18-18					
C2M17	VAAL RIVER AT COMMANDODRIF	27-28-45	26-13-30	-1	74-01-21	74-01-21
C5W55	VAAL RIVER AT BALKFONTEIN	27-23-45	26-30-30	2384	74-01-21	86-11-05
C2M61	VAAL RIVER AT KLIPPLAATDRIFT	27-23-15	28-27-45	495	72-05-14	86-12-29
C2H65	LEEUDORING SPRUIT AT KLIPSPRUIT	27-22-15	26-21-00	334	72-02-23	86-12-08
C2M66	MAKWASSIE SPRUIT AT VLIEGEKRAAL	27-29-30	26-04-30	306	72-08-02	86-12-15
C2M67	SAND SPRUIT AT LEEGTE	27-33-45	26-14-00	22	74-01-21	86-11-10
C2W01 R	OFS GOLDFIELDS PURIFICATION WORKS	27-24-00	26-30-30	67	79-10-29	86-10-27
C2W01 8	OFS GOLDFIELDS PURIFICATION WORKS	27-24-00	26-30-30	39	79-10-29	86-10-27

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C30 (0330)

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C3MO3 C3MO7 C3MO9 C3M10 C3M12	HARTS RIVER AT TAUNG HARTS RIVER AT ESPAGSORIF GREAT BOETSAP EYE AT BOETSAP RESERVE THABASIKWA EYE AT BUXTON VLAKFONTEIN EYE AT METSEMATSHWE RESERVE	27-34-30 27-54-15 27-56-15 27-36-30 27-39-45	24-44-45 24-37-00 24-24-15 24-36-45 24-05-15	355 344 53 108 202	71-08-05 67-12-11 72-03-15 75-10-23 72-03-15	86-09-18 85-05-14 81-08-10
STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C3M13 C3R0101 C3R0201 C3R0203 C3R0301	HARTS RIVER AT HOUNT RUPERT SCHWEIZER RENEKE DAM:NEAR DAM WALL SPITSKOP DAM:NEAR DAM WALL SPITSKOP DAM:POINT IN DAM BARBERS PAN AT ZANDVLEI (C3L0101)	28-09-30 27-10-30 28-07-30 28-07-30 26-33-15	24-28-30 25-20-15 24-30-15 24-30-15 25-35-30	548 90 187 39 35	71-08-05 75-10-23 75-10-24 77-08-14 72-03-14	86-12-09 85-07-26 79-11-14

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C40 (0340)

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C4M04	VET RIVER AT NOOITGEDACHT	27-56-15	26-07-30	419	72-08-03	86-12-31
24901	VET RIVER AT HOOPSTAD	27-50-30	25-54-00	537	80-01-29	86-08-11
C4RO1C	ALLEMANSKRAAL DAMILEFT BANK CANAL	28-17-15	27-09-00	2	72-10-26	72-10-26
C4R0101	ALLEMANSKRAAL DAM:NEAR DAM WALL	28-17-15	27-09-00	118	68-04-01	86-07-22
24R02C	ERFENIS DAM : LEFT BANK CANAL	20-30-30	26-46-45	8	86-06-16	86-10-27
34R02W	ERFENIS DAM : DOWN STREAM WEIR	28-30-30	26-46-45	2	86-07-14	86-10-31
34R0201	ERFENIS DAM:NEAR DAM WALL	28-30-30	26-46-45	164	68-04-01	86-12-15
СН	EMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL	L GAUGING	STATIONS IN	DRAINAGE REGION	C51 (0351	
STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
		20 10 15	24 42 45	19	72-03-18	95-12-10
C5M08	RIET RIVER AT RIVIERA	29-48-45		11	72-03-18	B5-12-08

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C5MD8	RIET RIVER AT RIVIERA	29-48-45	26-12-45	19	72-03-18	05-12-10
C5M09	OSPOORT SPRUIT AT OS POORT	29-54-15	26-13-00	11	72-03-18	85-12-08
C5M12	RIET RIVER AT RIETWATER	29-39-30	25-58-30	178	75-12-21	84-01-04
C5M16	RIET RIVER AT AUCAMPSHOOP	28-57-30	24-14-30	109	70-06-08	85-11-10
C5M20	TROMPSBURG EYE AT TROMPSBURG TOWNLANDS	30-02-30	25-46-45	120	79-09-25	86-12-02
C5M21	MOSTERS HOEK EYE AT MOSTERS HOEK	29-40-00	26-14-45	116	75-10-29	86-12-02
C5R0101	TIERPOORT DAM:NEAR DAM WALL	29-25-15	26-08-15	87	72-10-27	86-12-02
C5R02C	KALKFONTEIN DAH:LEFT BANK CANAL	29-29-45	25-13-15	5	83-01-03	83-11-01
C5R0201	KALKFONTEIN DAM:NEAR DAM WALL	29-29-45	25-13-15	87	68-04-02	85-05-14

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C52 (0352)

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C5H07	RENOSTER RIVER AT SHANNON	29-08-45	26-19-00	21	72-06-13	84-01-11
C5H15	MODDER RIVER AT STOOMHOEK	28-48-30	26-06-45	117	67-01-22	82-11-18
C5M18	MODDER RIVER AT TWEERIVIER	29-01-30	24-38-30	283	71-05-03	83-04-08
C5M22	KGABANYANE RIVER AT BEDFORD	29-17-14	26-55-15	1	86-06-10	86-06-10
C5M23	KBABANYANE RIVER AT BEDFORD	29-17-15	26-55-15	6	83-07-27	86-12-02
C5R03W	RUSTFONTEIN DAM:DOWN STREAM WEIR	29-16-15	26-37-00	5	83-05-58	83-06-01
C5R0301	RUSTFONTEIN DAM:NEAR DAM WALL	29-16-15	26-37-00	101	68-05-19	86-08-01
CSR04W	KRUGERSDRIFT DAM:DOWN STREAM WEIR	28-53-00	25-57-30	106	79-08-21	86-12-01
C5R0401	KRUGERSDRIFT DAM#NEAR DAM WALL	28-53-00	25-57-30	87	75-03-10	84-11-03
C5R0501	GROOTHOEK DAM:NEAR DAM WALL	29-18-00	26-51-00	16	81-03-03	86-12-08

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C6D (0360)

STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
All the last last last last last last last last	And the same was the same of the				
VALS RIVER AT ROODEWAL	27-26-30	26-59-15	15	80-01-07	81-04-01
VALS RIVER AT BOTHAVILLE	27-24-00	26-37-00	231	72-08-01	86-12-29
VALS RIVER AT BOTHAVILLE	27-24-00	26-37-30	106	74-01-21	80-01-07
VALS RIVER AT KLIPFONTEIN	27-56-15	27-59-30	89	78-07-05	86-11-04
	VALS RIVER AT ROODEWAL VALS RIVER AT BOTHAVILLE VALS RIVER AT BOTHAVILLE	VALS RIVER AT ROODEWAL 27-26-30 VALS RIVER AT BOTHAVILLE 27-24-00 VALS RIVER AT BOTHAVILLE 27-24-00	VALS RIVER AT ROODEWAL 27-26-30 26-59-15 VALS RIVER AT BOTHAVILLE 27-24-00 26-37-00 VALS RIVER AT BOTHAVILLE 27-24-00 26-37-30	VALS RIVER AT ROODEWAL 27-26-30 26-59-15 15 VALS RIVER AT BOTHAVILLE 27-24-00 26-37-00 231 VALS RIVER AT BOTHAVILLE 27-24-00 26-37-30 106	VALS RIVER AT ROODEWAL 27-26-30 26-59-15 15 80-01-07 VALS RIVER AT BOTHAVILLE 27-24-00 26-37-00 231 72-08-01 VALS RIVER AT BOTHAVILLE 27-24-00 26-37-30 106 74-01-21

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C70 (0370)

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C7M03	HEUNING SPRUIT AT MIZPAH	27-21-30	27-17-15	37	72-03-19	86-11-25
C7M05	RENOSTER RIVER AT SPES BONA	27-07-30	27-06-30	10	80-04-04	81-02-20
C7M06	RENOSTER RIVER AT ARRIESRUST	27-02-45	27-00-15	103	78-08-07	86-12-30
C7R01D	KOPPIES DAM:RIGHT BANK CANAL	27-15-30	27-40-30	41	72-06-12	B6-10-16
C7R0101	KOPPIES DAM:NEAR DAM WALL	27-15-30	27-40-30	88	72-06-12	86-12-19
C7R0201	ROODEPOORT DAM: NEAR DAM WALL	27-13-30	27-31-00	22	75-11-25	86-11-06
C7R0301	WELTEVREDE DAM:NEAR DAM WALL	27-13-15	27-34-15	11	75-11-25	77-03-07

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C80 (0380)

STATION NO.	STATION NAME	LATITUDE		NO. OF ANALYSES	FIRST-	LATEST SAMPLE
8F44B	BATH DAUBE (BULK PRECIPIT.) AT LETDEN	29-57-10	29-29-25	9 478 12 329 306 217		
C8MD1	WILGE RIVER AT FRANKFORT WILGE RIVER AT HARRISMITH	27-16-00	28-29-00	498	71-12-06	86-12-24
2048	WILGE RIVER AT HARRISHITH	28-16-15	29-06-45	12	77-01-01	77-03-19
:8MD3	CORNELIS RIVER AT WARDEN	27-50-30	28-57-45	329	71-09-13	86-11-25
38M04	WILGE RIVER AT FRANKFORT WILGE RIVER AT HARRISMITH CORNELIS RIVER AT WARDEN LIEBENBERGSVLEI RIVER AT DE WELKOM ELANDS RIVER AT ELANDS RIVER DRIFT	27-42-00	28-19-30	306	75-11-20	86-12-23
8805	ELANDS RIVER AT ELANDS RIVER DRIFT	28-22-45	28-51-45	217	66-02-17	86-12-03
8406	KLERK SPRUIT AT GEDULD	28-17-45	28-48-30	226	66-02-17	85-11-06
28M07	LIEBENBERGSVLEI RIVER AT VOGELFONTEIN 69	28-11-30	28-20-45	118	75-11-19	78-03-17
80M90	TUGELA-VAAL CANAL AT METZ	28-32-30	29-05-00		78-08-11	
9H09	TIER RIVER AT TYGER HOEK	28-03-15	28-29-30	108	75-11-19	86-12-03
3H10	TUGELA-VAAL CANAL AT METZ TIER RIVER AT TYGER HOEK OUBERG SPRUIT AT FRASER SPRUIT ELANDS RIVER AT KILLARNEY	28-21-00	29-05-30		75-11-21	
BM11	ELANDS RIVER AT KILLARNEY	28-09-30	28-52-30			
:8M12	VAALBANK SPRUIT AT VOORSPOED	28-05-00	28-50-15	170	78-10-12	86-12-03
9M13	VAALBANK SPRUIT WEST AT VAALBANK 327	28-04-30	28-47-00	47	79-10-04	86-12-03
8H14		27-49-00	28-47-00	405	75-11-20	86-12-31
8H15	WILGE RIVER AT HARRISHITH TOWN LANDS	28-18-30	29-08-00	59	75-12-08	77-08-06
8M16	KROM SPRUIT AT COSMOS	27-15-30	28-24-15	87	77-10-25	86-12-18
9H17	KROM SPRUIT AT COSMOS KLIP SPRUIT AT KLIPOOG HOL SPRUIT AT DAVIDSDALE	27-07-45	28-17-00	29	80-02-11	82-10-20
8H18	HOL SPRUIT AT DAVIDSDALE	27-39-00	28-52-00	192	78-10-25	86-12-02
8M20	LIEBENBERGSVLEI RIVER AT ROODEKRAAL	27-41-15	28-22-45	47	28-01-01	81-02-19
8M21	SKULP SPRUIT AT KALKOEN	27-18-30	28-29-00	7	80-12-15	85-02-14
8M22	SKULP SPRUIT AT KALKOEN WILGE RIVER AT KIMBERLEY MEUL RIVER AT KAFFERSTAD HIDDEL SPRUIT AT MIDDELSPRUIT	27-18-00	28-29-45	324 170 47 405 59 87 29 192 47 7	79-04-30	83-08-23
:8M23	MEUL RIVER AT KAFFERSTAD	28-01-30	28-59-45	188	78-11-02	86-12-31
8M24	MIDDEL SPRUIT AT MIDDELSPRUIT	28-04-30	28-42-00	1 50 50	79-11-29	
28M25	VAALBANK SPRUIT AT RUSTKOP	28-08-00	28-45-45		79-10-24	
8M26	LIEBENBERGSVLEI RIVER AT FREDERIKSDAL		28-31-29			
8M27		27-18-00	28-35-08			
BG01A		28-09-30		64	83-10-01	
8002A	RAINGAUGE AT DAVIDSVLEI (BULK PREC)			0	-0 10 01	44 47 14
8902B	RAINGAUGE AT DAVIDSVLEI (WET ONLY PREC)		20-50-10	o o		
28003A	RAINGAUGE AT KRANSPUNT (BULK PRECIPITATI		28-29-48	0		
:00038	RAINGAUGE AT KRANSPUNT (WET ONLY PRECIPI		28-29-48	ő		
	STERKFONTEIN DAM:DOWN STREAM WEIR				80-10-08	86-10-23

C8R0301 C8R0302 C8R0303	STERKFONTEIN DAM:NEAR DAM WALL STERKFONTEIN DAM:POINT IN DAM STERKFONTEIN DAM:POINT IN DAM		29-01-00 29-01-00	74 21 14	77-04-25 84-02-20 84-02-20 84-02-20	86-12-03 85-02-11 85-02-07 85-02-07
C8R0304 C8R0305	STERKFONTEIN DAM:POINT IN DAM STERKFONTEIN DAM:POINT IN DAM	28-23-15 28-23-15 28-13-00		20 16 126	84-02-20 75-03-20	85-02-07 86-12-03
C8R0401 C8R0501 C8R0401	SAULSPOORT DAM:NEAR DAM WALL LOCH ATHLONE DAM:NEAR DAM WALL GERRANDS DAM:NEAR DAM WALL	28-15-00	28-18-30 28-17-30	123	75-11-19 75-11-19	86-12-03 86-12-03

CHEMICAL ANALYSES AVAILABLE FOR HYDROLOGICAL GAUGING STATIONS IN DRAINAGE REGION C90 (0390)

STATION NO.	STATION NAME	LATITUDE	LONGITUDE	NO. OF ANALYSES	FIRST-	LATEST SAMPLE
C9M03	VAAL RIVER AT RIVERTON	28-30-45	24-41-45	3	72-03-16	77-04-23
C9H07	VAAL RIVER AT ST. CLAIRE	29-02-30	23-50-15	128	66-03-29	77-09-12
C9M08	VAAL RIVER AT SCHOOLPLAATS	28-06-45	24-55-00	161	72-03-15	82-07-30
C9H09	VAAL RIVER AT DE HOOP	28-31-00	24-36-00	340	71-12-09	86-12-18
C9M10	VAAL RIVER AT MOZIB (GAMAGARA)	28-24-15	24-16-15	288	75-09-08	86-11-24
C9001	VAAL RIVER AT DOUGLAS BRIDGE	29-03-00	23-46-15	71	79-10-22	81-12-21
C9R01D	VAALHARTS DAM:RIGHT BANK CANAL	28-07-00	24-55-45	23	71-10-07	74-03-28
C9RO1W	VAALHARTS DAM DOWN STREAM WEIR	28-07-00	24-55-45	3	85-06-15	85-11-21
C9R0101	VAALHARTS DAM:NEAR DAM WALL	28-07-00	24-55-45	463	75-10-27	84-04-02
C9R0103	VAALHARTS DAM:POINT IN DAM	28-07-00	24-55-45	3	81-07-13	84-11-25
C9R02W	BLOEMHOF DAM DOWN STREAM WEIR	27-40-15	25-37-00	734	72-11-23	86-11-05
C9R0201	BLOEMHOF DAM: NEAR DAM WALL	27-40-15	25-37-00	464	71-03-03	86-12-17
C9R0202	BLOEMHOF DAM:POINT IN DAM	27-40-15	25-37-00	204	77-08-12	86-08-14
C9R0203	BLOEMHOF DAM POINT IN DAM	27-40-15	25-37-00	290	77-08-17	86-08-14
C9R0204	BLOEMHOF DAM:POINT IN DAM	27-40-15	25-37-00	60	77-09-20	78-12-05
C9R0205	BLOEMHOF DAM:POINT IN DAM	27-40-15	25-37-00	39	77-08-11	78-12-04
C9R0206	BLOEMHOF DAM POINT IN DAM	27-40-15	25-37-00	192	77-08-11	86-08-14
C9R0207	BLOEMHOF DAM : POINT IN DAM	27-40-15	25-37-00	6	86-03-04	86-08-14
C9R0208	BLOEMHOF DAM:POINT IN DAM	27-40-15	25-37-00	270	80-03-17	86-08-14
C9R0209	BLOEMHOF DAM POINT IN DAM	27-40-15	25-37-00	309	77-10-19	86-08-14
C9R0211	BLOEMHOF DAM POINT IN DAM	27-40-15	25-37-00	82	77-08-12	79-11-13
C9R0213	BLOEMHOF DAM:POINT IN DAM	27-40-15	25-37-00	100	77-08-11	79-11-12
C9R0214	BLOEMHOF DAM:POINT IN DAM	27-40-15	25-37-00	104	77-08-10	79-11-12
C9R0215	BLOEMHOF DAM:POINT IN DAM	27-40-15	25-37-00	63	77-08-16	86-08-14
C9R0301	DOUGLAS DAM:NEAR DAM WALL	29-02-30	23-50-15	332	77-10-03	86-11-07
C9W01 R	VAAL GAMAGARA PURIFICATION WORKS	28-24-45	24-16-00	73	79-06-25	86-10-03
C9W01 S	VAAL GAMAGARA PURIFICATION WORKS	28-24-45	24-16-00	73	79-06-13	86-10-03

APPENDIX D: WATER QUALITY DATABASE. EXAMPLES OF STANDARD OUTPUT FORMATS AVAILABLE FROM THE MINIMUM DATA INTERVALS ARE D DAYS

STATION - SJIKE BOSTHRAND RIVER AT PLATEOPPIE STATION NO. CZMYO LOCATION - LAT. 26/38/30 LONG. 28/13/45 TYPE RIVER LOCATION - LAT. 24/38/30 LONG. 28/13/45

		*********		20					
				10202	01201	10204	20201	12301	19201
DATE	TIME	GAUGE	DEPTH	ELEC COND	PH	TDS	CA DISS	46 3155	K 0155
45-40-DA		H	SAMPLED(M)	M5/M	PH UNITS	HG/L	HG/L CA	HGYL MG	MEZE K
79- 1- 3	0808	0.110		31.9	7.1	21.1	19	11	3.7
79- 1-10	0850	0.007		34.5	7.2	226	2.2	1.2	3.7
79- 4-25	0915	3.152		96.0	7.3	597	4-8	2.7	7 - 2
79- 5- 2	1234	0.123	-	120+4	7.5	77.6	59	3.6	0 + 2
79- 5- 9	1154	0-122		135.3	7.4	83.7	6.5	37	0.47
79- 5-16	1254	0.122	140.40	166.2	7.4	1090	77	4.7	9 v B
79- 5-23	0900	0.123		195.4	7.0	1312	3.2	5.4	10.9
79- 5-30	1200	2 + 140		232.4	7.0	1519	95	67	13.6
79- 6- 6	1253	0.149		263.0	8.4	1945	112	7.5	15.5
79- 6-14	1235	0.153		260.0	7.3	1877	1.25	79	16-0
79- 6-20	1315	0.151		262.4	7.9	1839	122	7.9	16.7
79- 6-27	1253	0.153		203.0	8.0	1802	125	72	17-1
79- 8-22	1925	0.486		225.1	7.0	1503	120	6.4	19.5
79- 9-19	1325	0+115		236.0	7 . 0	1633	126	65	5 - 8
79-10- 3	1230	0.160		206-1	7.6	1316	9.4	43	19.1
79-10-10	1423	0.135		198.9	7.0	1264	8.9	4.6	18+9
79-10-17	1100	0.080		190.9	7.7	1304	109	58	17.8
79-11- 7	1430	0 + 120		38.0	7.3	583	41	2.4	8 - 4
79-11-14	1300	J-360	0.0	111.4	7.2	702	50	3.0	10.2
79-11-21	1345	0.300	0.2	110.0	7.4	753	51	3.0	8.3
79-11-28	1350	1.540		70.7	6.9	464	35	21	7 + 2
79-12- 5	1350	0.690	-	103.8	7.2	674	66	31	3.6
79-12-12	1350	0.550		132.7	7.0	914	79	41	11.6
79-12-19	1345	0.580		113.4	5+6	774	7.7	3.9	11.4
79-12-25	1310	0.713		100.4	7.1	71.6	58	3.0	12.2
83- 1- 2	1240	0.510		141.4	7.6	948	5.2	41	15.9
83- 1- 9	1425	1.070		57+3	7.1	387	33	17	6+9
83- 1-16	1410	1.110		106.7	7.2	720	6.9	3.1	10.6
80- I-23	1225	3.920		96+5	7 - 3	547	55	26	9 - 2
80- 1-30	1250	1.000		50.4	7.2	504	50	2.1	7.4
83- 2- 6	1235	1.065		62.7	7.0	433	42	18	6 - 2
83- 2-13	1145	2 - 300		35.2	6.8	223	23	10	4.9
80- 2-20	1325	1.860		31.5	6.9	213	21	10	4.7
80- 2-27	1230	0.950		53.4	7.1	351	36	17	6.0
80- 3- 5	1145	0.825		63+0	6.9	425	42	20	6.5
80- 3-12	1027	0.505		66.4	7.0	451	44	2.2	6.6
80 - 3-19	1115	0.450		71.6	7 - 1	491	48	2.3	6 - 8
85- 3-25	1019	0-450		61.7	6.9	385	40	1.9	7.9
85- 4- 2	1210	0.370	0.0	91.7	7.4	532	54	2.2	8.7
80- 4- 9	1110	0.460	0 - 1	99.9	7 - 1	615	59	2.6	8 = 8
83- 4-16	1150	0.280	0.0	60.0	7.1	379	3.5	1.9	6.0
83- 4-23	1130	0.170	0.0	77.1	7 - 4	486	45	2.4	0.7
80- 4-30	11 05	0.190	0.0	89.7	7.1	554	5.2	26	8 + 2
33- 5- 7	1135	0.125	0 - 1	97.7	7.4	59.5	5.4	2.7	7 - 6
83- 5-14	1355	0 - 210	0.1	103.4	7.4	547	57	2.9	3.4
30- 5-21	1340	2.220	5-1	109.1	7.3	67.6	54	3 Z	9.0
93- 5-28	1100	0.210	0.0	110.3	7.1	574	5.9	3.0	9.2
87-6-4	1110	0.235	0.0	114.6	7 . 2	595	60	3.5	7.7
80- 5-11	0750	2 + 260	0.0	98.5	7.0	73.9	59	3.4	9.2
87- 5-13	1045	2.560	0+1	128.5	7 - 2	790	6.5	3.5	10.3
85- 6-25	11 05	0+270	0 + 1	139.0	7 . 1	264	6.6	3.8	11.0
80- 7- 9	1145	0.260	0.0	139.1	7.4	930	6.5	3.9	9.5

SUMMER SEASON 1ST OCTOBER - 30TH HARCH)

STATION - VAAL RIVER AT SCHOEMANSDRIF LOCATION - LAT. 26/58/15 LONG. 27/12/45 PERIOD FROM 85-10- 1 TO 86- 9-30

TYPE

STATION NO. C2M18 RIVER

MINIHUM DATA INTERVALS ARE O DAYS

DETERMINAND	UNITS	CODE	: MEAN	1	HEDIAN		MIN	3	HAX	32	STANDARD	213	COEFF OF	100
				*		1		1		1	DEVIATION	:	VARIATION(%)	
			:	#				4		÷		:		:
TEMP	DEG C	10203		1	AA	1	8.8	34	8.8	1	**		AA	:
ELEC COND	MS/H	10202	: 60.8		69.0	9	25.6		95.6	1	21.2	:	34.9	2
PH	PH UNITS	01201	: 7.4	4	7.6	1	6.2		7.9	6	0.5		6.5	
TDS	MG/L	10204	: 397		415	:	166		661	:	144	:	36.2	1
HARDNESS TOT	HG/L CACO3	10205	: 191	3	204		80		293		71	:	37.1	:
CA DISS	HG/L CA	20201	: 48	4	50		20		76	3	19	:	38.8	1
MG DISS	HG/L HG	12201	: 17		17		7		36		7	:	41.4	1
K DISS	HG/L K	19201	: 6.2		5.0	12.	0.4	14	31.0	4	5.9	:	95.8	1
NA DISS	HG/L NA	11201	: 44		46		16		73	9	17	:	39.4	1
ALK TOT	MG/L CACO3	10201	: 78	-	69	*	50		171	:	30		38.5	13
CL DISS	HG/L CL	17201	: 45		44		17	0.4	95		19	:	42.1	1
F DISS	HG/L F	09201	1 0.4		0.4	1	0.2		0,8	2	0.2	:	39.3	2
SI	MG/L SI	14201	1 4.8	2	5.6	2	0.4	1	6.8	1	1.8	:	37.3	
SO4 DISS	MG/L SO4	16201	: 135	2	161	2	29	4	271		73	1	53.7	
NH4	HG/L N	07201	: 0.07	1	0.07	2	0.04	1	0.10	1	0.02	1	23.9	
NO3+NO2 - N	HG/L N	07202	: 0.20		0.06		0.02	4	0.93		0.27		135.1	4
N KJEL	HG/L N	07203	:	:		2		1		:		2	**	2
P INORG TOT	HG/L P	15201	: 0.074		0.013		0.005	:	0.855	:	0, 204	2	273.6	
P TOTAL	HG/L P	15202	:			2.5		:	* ·	:	F-4	#3		
DOC	HG/L C	06201						:	**			:		
			1	12		1		1				1		
DOC	HG/L C	06201	:	:		1		:	**	:		:		

DETERMINAND	NO. OF VALUES			3	PERCENTILES			
			10%		50%		90%	
TEMP	12	13			**	2.5	**	
ELEC COND	26	**	29.1		68.0		84.0	
PH	26	1	6.2	#	7.6		7.8	:
TDS	26		202		409		570	
HARDNESS TOT	26	£ (1)	100	*	197		265	:
CA DISS	26		26	1	49		70	
MG DISS	26		8		.17		23	:
K DISS	26	- 3	0.6		5.0		9.2	:
NA DISS	26		21		46		64	
ALK TOT	26	:	56		69	:	90	÷
CL DISS	26	1	22		4.4		65	
F DISS	26	1	0.2	1	0.4	*	0.6	
SI	26	1	2.4	1	5.6	:	6.5	1
SO4 DISS	26	1	38		157		208	4
NH4	26		0.04	:	0.07	1	0.08	:
NO3+NO2 - N	26		0.02	:	0.05		0.62	
N KJEL	0	1		:		:		:
P INORG TOT	26	2	0.005	:	0.013		0.058	:
P TOTAL	0			:		:		:
DOC	0			1	5.5	:		:

^{**} INSUFFICIENT VALUES; STATISTICS NOT CALCULATED

WINTER SEASON(1ST APRIL - 30TH SEPTEMBER)

STATION - VAAL RIVER AT SCHOEMANSDRIF LOCATION - LAT. 26/58/15 LONG. 27/12/45 PERIOD FROM 85-10- 1 TO 86- 9-30

STATION'NO. C2M18 TYPE RIVER

DETERMINAND	UNITS	CODE	4	MEAN	4	MEDIAN	3	MIN	:	MAX	±	STANDARD	23	COEFF OF	
	0.0000000000						1					DEVIATION	:	VARIATION(%)	:
			+		1		1				:		:		:
TEHP	DEG C	10203		16.1		15.0	3	10.0		25.5	:	4.7	1	25.4	:
ELEC COND	HS/H	10202	4	70.0		69.0	:	46.0	9	91.9	1	13.3	:	19.0	;
PH	PH UNITS	01201		7.6		7.6	2	7.4		8.2		0.2	1	2.1	:
TDS	HG/L	10204		458		444	:	298	8	633		92	1	20.1	1
HARDNESS TOT	MG/L CACO3	10205	ī	212	3	205		134	1	310	:	45	1	21.1	
CA DISS	MG/L CA	20201	:	56	22	54		34	2	81		12	1	21.2	1
MG DISS	MG/L MG	12201	1	18	1	17		12		27	7	4		21.2	1
K DISS	MG/L K	19201	1	8.5		9.4		2.5	*	14.4		3.5		41.3	:
NA DISS	MG/L NA	11201	-	54	4	53		32	*	84		13		23.6	t)
ALK TOT	MG/L CACO3	10201	1	76	4	76		6.4	+	91	3	7	1	8.6	:
CL DISS	MG/L CL	17201		49		47	4	27		69	:	12	2	24.5	10
F DISS	HG/L F	09201	1	0.4	£	0.4		0.3	#	0.7	4	0.1		22.1	
SI	MG/L SI	14201	1	4.2	1	4.5		1.7	4	6.3	1	1.4		33.5	5
SO4 DISS	MG/L S04	16201	ž	171		169	3	88	1	268	1	47	1	27.6	1
NH4	MG/L N	07201	1	0.07	4	0.07	4	0.02	2	0.13		0.03	:	38.6	:
NO3+NO2 - N	MG/L N	07202	1	7. 14	3	1.57	1	0.02	1	2.19	1	0,86		75.8	13
N KJEL	MG/L N	07203	1		11		14		1		ż		1		\$
P INORG TOT	MG/L P	15201	2	0.024	1	0.013	- 3	0.005	2	0.156	:	0.031	2	125.9	:
P TOTAL	MG/L P	15202			1		84						1		1
DOC	MG/L C	06201	1				34		1				:		1
					1.5		0.6								100

DETERMINAND	NO, OF VALUES				PERCENTILES			
			10%		50%		90%	
TEMP	25	1	11.0	1	15.0	1	22.0	:
ELEC COND	27		50.6		69.0	1	85.0	:
PH	27		7.4	:	7.6	4	7.7	:
TDS	27		327	1	4 4 4	48	572	-
HARDNESS TOT	27		141		205		254	1
CA DISS	27		36	1	54		67	- 1
MG DISS	27		12		17	4	21	ż
K DISS	27	1	3.0		9.4		12.1	
NA DISS	27	1	36		53	1	67	-
ALK TOT	27	1	68	1	76	1	83	-
CL DISS	27	Ĭ.	32	ź	47		6.6	
F DISS	27	1	0.3	7	0.4	7	0.5	
SI	27	1	2.0		4.5	4	5.7	-
SO4 DISS	27	:	99	:	169	1	219	
NHA	27		0.03		0.07	1	0.08	-
NO3+NO2 - N	27		0.02	:	1.57	:	2.09	
N KJEL	0			\$			= =	
P INORG TOT	27		0.006	:	0.013	1	0.049	:
P TOTAL	0	€		3		23	181 J. (1900)	-
DOC	0					;		

5.4 18.1

0.4

16 :

6 :

4.9 :

16 :

21 16 : 0.1 : 1.6 :

63 :

0.02 :

0.79 :

0.145 :

... 40.00

123

59

STANDARD : COEFF OF : DEVIATION : VARIATION(%) :

27.6

4.8

28.8

29.4

30.5

32.1

67.1

32.2 27.7

33.5 37.1

36.2

47. 7

32.0

116.9

296 6

P INORG TOT

P TOTAL

N KJEL

DOC

0

5.3

0

0

TOTAL PERIOD

STATION - VAAL RIVER AT SCHOEHANSDRIF LOCATION + LAT, 26/58/35 LONG, 27/12/45 PERIOD FROM 85-10- 1 TO 86- 9-30

STATION NO. C2M18 TYPE RIVER

-- :

0.058 :

-- :

ETERMINAND	UNITS	CODE		HEAN	200	HEDIAN			MIN		32	20	XAM		
EIEKHINAND	08113	CODE		nean	III.	DEUTAR		9	na n			- 0	nax		
								3			1				
EMP	DEG C	10202	0.0	18.8	-	18,0		i i	10.	n			30.	n	
LEC COND		19303		65.5		69.0		4	25	£	12		95.		
H	PH UNITS			7.5		7.6		T.	6		32		8.		
DS		10204		11.29	3	120		5	25.6	-	10	54	66.5	*	
ARDNESS TOT				428 201		205		4	166 80		12		220		
A DISS	MC/I CA	20203	2	6.0		5 %			20		1.5		9.4		
A DISS	HG/L CA HG/L HG	19393	RC	17	31	17		ii.	20 7 0 16 50		100		26		
DICC.	MOYE NO	10221		2 4	-	2 6		0	0	0.0	100		3.0		
0122	MG/L K	19201	5	7.4	- 3	1.0		1	u,		1.5		31.	u	
IA DISS	MU/L NA	11201	8	4.9	33	20			- 10		3		0.4		
LK TOT	MG/L CACOS	10201	8	7.7	330	75		3	50		18		177		
L DISS	MG/L CL	17201		4.7		47			- 17	1.2	8.5		95		
CA DISS MG DISS K DISS NA DISS ALK TOT CL DISS F DISS SI SI SI NH4 NO3+NO2 - N N KJEL	MG/L F	09207	10	0.4	1	0.4		3	0	. 2	135		0.	8	
51	MG/L SI	14201		4.5	2	4.6	,	3	0	. 4	- 4		6.	8	
504 DISS	MG/L SO4	16201	1	153		100	_	3	29			- 8	277	951	
NH4	MG/L N	07201		0.07	1	0.0	17		0	0.2	#		0.	13	
103+N02 - N	MG/L N	07202	+	0.68	170	0.2	0	1	D	. 02	19		2.	79	
N KJEL	MG/L N	07203	10		330			1			7				
INORG TOT	MG/L P	75207		0.049	326	0.0	113	1	0	. 005	-		0.	855	
PTOTAL	HG/L P	15202	1		1			1			37				
000	HG/L C	06201	£1		3	(# ·*·		4	0.0		7.5		-		
			£0					1			-1				
DETERMINAND	NO. OF VALUES					PERCE	ENTI	LES							
				10:	x.		50%			901	t				
TEHP	37			13. 34. 7. 226 103 27	. 0		18, (0		26.	202	1			
ELEC COND	5.3		- 3	34.	. 5	2	59.1	0		86		I			
H	53		1	7.	2	T.	7.1	5	1	7.	8	1			
rds	53		-	226		1 3	30		t	584		4			
HARDNESS TOT	53		- 34	103		1 2	205		:	265		İ			
CA DISS	53		1	27		1	54		4	70		4			
MG DISS	53			9		7	17		40	2.3		35			
DISS	53			1.	. 1		7.	5	2	77.	8	¥			
NA DISS	53		- 6	9 1, 26 58 26		:	50					X			
ALK TOT	53		- 3	58		1	75			90		8			
CL DISS	53			2.6		1	47		t.	68		1			
F DISS:	53		- 8	0	3	4	0.	ta i		0.	6	-			
SI	5.3			2	0	4	4.	5		6	4	43			
SO4 DISS	53		- 5	4.8	-12	4	166	1.5		219		9			
VH4 -	53			26 0 2 48 0	04	1	0.	07		0.	8.0	- 1			

-- :

*0.005 ±

-- 1

** 1

-- :

--

0.013 :

5

17201 CL DISS 4 4 3 4 5 2 4 3 4 5 4 4 19201 X DISS 8 4 3 4 5 2 4 3 4 5 4 4 5 3 4 5 4 4 5 5 3 5 4 4 4 3 4 5 2 4 3 4 5 4 4 5 3 4 5 4 4 5 5 3 5 4 20101 CA DISS FILT 0 STATION - VAAL RIVER AT SCHOEMANSDRIP STATION NO. C2H18 LOCATION - LAT. 26/58/15 LONG. 27/12/45 TYPE RIVER CODE DETERMINAND 1986 J F H A H J J A S O H D 01201 PH 4 4 4 5 4 4 5 06201 DOC 0 0 0 0 0 0 07201 NH4 u u u 07202 NO3+NO2 - N 4 4 4 5 4 4 5 0 0 0 0 0 0 07203 N KJEL 09201 F DISS 10201 ALK TOT 10202 ELEC COND 10203 TEMP 10204 TDS 10205 HARDNESS TOT 4 4 4 11201 NA DISS 4 4 4 5 4 4 5 4 5 3 0 12101 MG DISS FILT 14201 SI 15201 P INORG TOT 1 1 1 5 1 1 5 4 5 3 0 0 0 0 0 0 0 0 0 0 0 15202 P TOTAL 4 4 4 5 4 4 5 4 16201 SO4 DISS 4 4 4 5 4 4 5 17201 CL DISS 1 4 4 5 4 4 5 4 5 3 0 0 19201 K DISS

20101 CA DISS FILT 0 0 0 0 0 0 0 0 0 0 0

STATIO LOCATI	N - VAAL RIVER ON - LAT, 26/58/			EHA								STA			C2M RIV										
CODE	DETERMINAND						984	1										1.9	85						
		J	F	н	A	н	3	3	A	3	0	н	D	J	P	н	٨	н	2	j	A	5	0	н	D
01201	PH	li.	4	3	4	5	2	4	3	4	5	4	4	5	3	4	5	14	N.	5	5	3	5	6	5
06201	DOC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0
07201	NH4	4	4	3	4	5	2	4	3	- 14	5	- 0	4	5	3	4	5	- 9	- 4	5	5	3	5	4	5
07202	NO3+HO2 - N	4	14	3	14	5	2	14	3	14	5	4	4	5	3		5	14	14	5	5	3	5	14	5
07203	N KJEL	0	0	0	0	0	0	0	0	0	0	0	ō.	0	0	0	0	0	0	0	0	0	0	0	0
09201	F DISS	4	14	3	14	5	2	14	3	- 14	5	4	14	5	3	4	5	- 14	4	5	5	3	5	14	5
10201	ALK TOT	4	4	3	4	5	2	4	3	4	5	n.	ц	-5	3	4	5	4	4	5	5	3	5	14	- 5
10202	ELEC COND	- 9	4	3	ų.	5	2	4	3	ų.	5	4	4	5	3	4	5	1	4	5	5	3	5	14	5
10203	TEHP	14	3	3	14.	5	2	4	3	16	la.	- 14	N.	5	3	4	- 5	14	4	5	5	1	2	7	1
70204	TDS	14	14	3	14	5	2	4	3	16	5	4	4	5	3	41	5	- 14	11.	5	5	3	5	44.	5
10205	HARDNESS TOT	4	12	3	16	5	2	4	3	16	5	16	4.	5	3	4	5	4	ц	5	5	3	5	11.	5
11201	NA DISS	- 4	fa.	3	- 14	5	2	4	3	- 4	5	4	4	5	3	44	- 5	14	4	5	5	3	5	14	- 5
12101	MG DISS FILT	- 4	fa.	3	14	5	2	14	3	4	5	4	4	5	3	24	5	14:	k	5	5	3	5	14.	
14201	SI	4	14.	3	- 4	5	2	11	3	- 11	5	4	4	5	3	4	5	4	14	5	5	3	5	14.	5
15201	P INORG TOT	- 4	n	3	4	5	2	14	3	4	5	4	4	5	3	h	5	4	ti	5	5	3	5	4	5
15202	P TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ò
15201	SOW DISS	4	4	3	4	5	2	is:	3	4	5	14	ii.	5	3	4	5	14	14	5	5	3	5	14	- 5
22202	CI DIES	1.00	-	3				Dr.	- 2	- 66	- 6				2	in.		-	-		- 2	- 5		in.	- 6

VERSLAG/REPORT

TR. NO.	TITEL/TITLE	OUTEUR(S)/AUTHOR(S)	PRYS/PRICE (AVB uitgesluit) (GST excluded)
62	Open Channel Fluid Mechanics (i) Open channel flow resistance (ii) Sediment transport in terms of power concepts.	A. ROOSEBOOM (1974)	R 7,39
65	The influence of changing landuse of inflow to reservoirs.	J.S. WHITMORE (1975) P.C. REID	R 1,70
56	Remote sensing techniques applied to salinity problems of part of the Pongola Government Water Scheme.	M.P. MULDER (1975) P.C. REID	R 1,50
6.7	Water use efficiency of a winter wheat crop.	P.C. HacREID (1976)	R11,30
72	The radiation balance over natural surfaces.	H. MAAREN (1977)	R 9,20
73	Prediction of potential evaporation losses from a natural surface area.	H. HAAREN (1977)	R 5,30
74	Some applications of energy exchange principles in hydrology.	H. MAAREN (1977)	R 4,60
*77	Quantitative estimation of groundwater recharge with special reference to the use of natural radioactive isotopes and hydrological simulation.	D.B. BREDENKAMP (1978)	R37,40
78	Proposed mathematical model for the estimation of the areal properties of high-intensity short-duration storms.	H.J. DIXON (1977)	R 5,99
79	Die beplanning van 'n optimale riviervloeimeetstasienetwerk vir S.A.	A.M.M. HULLER (1977)	R 6,47
30	Long range prediction of river flow: A preliminary assessment.	W.J.R. ALEXANDER (1978)	R 2,67
81	An investigation into possible changes in the water balance of the Pongola River catchment induced by land management.	WENDY ELIZABETH REDMAN (1974)	R 7,50

VERSLAG/REPORT

TR. NO.	TITEL/TITLE	OUTEUR(S)/AUTHOR(S)	PRYS/PRICE (AVB uitgesluit) (GST excluded)
82	The analysis of areal rainfall using multi-quadric surfaces.	P.T. ADAMSON (1978)	R 1,90
83	Estimation potential total evapo- transpiration with the Penman-equation for different vegetation covers for use in catchment management models.	H. MAAREN (1978)	R 2,70
8.4	Bekamping van die invloed van veroudering van watermonsters.	D.C. GROBLER (1978) C.A. ERUWER H. VAN VLIET	R 2,70
85	The chemical composition of water and the analytical chemist - A challenge.	W.H.J. HATTINGH (1979)	R 1,10
B6	The statistics of extreme values and the analysis of floods in S.A.	P.T. ADAMSON (1978)	8,08
88	Documentation of the Jan. 1978 floods in Pretoria and in the Crocodile River catchment.	Z.P. KOVACS (1978)	R 3,05
89	Notes on some unsolved problems in river flow.	W.J.R. ALEXANDER (1979)	R 4.02
9.0	Numerical techniques for function minimisation.	B.H. GILDING (1979) J.S. DU TOIT	R 2,72
91	The finite element method and an appraisal of a mathematical model of the Rawsonville-Goudini aquifer.	B.H. GILDING (1978) W.R.G. ORPEN	R 3,98
92	Waterverbruik deur water hissinte (Eichhornia Crassipes).	A. GERBER (1979)	R 1,61
94	The economic impact of eutrophication in S.A.	C.A. BRUWER (1979)	R 2,91
95	Guide to the use of herbicides on aquatic plants	D.J. STEYN W.E. SCOTT P.J. ASHTON (1979) F.S. VIVIER	R 4,30

VERSLAG/REPORT

TR. NO.	TITEL/TITLE	OUTEUR(S)/AUTHOR(S)	PRYS/PRICE (AVB uitgesluit) (GST excluded)
96	Soil survey of the experimental catchments near Bethlehem.	H. MAAREN (1979)	R 3,46
97	Operation of the storage reservoirs in the Pietermaritzburg-Durban region to reduce eutrophication	I. PEARSON	R 7,49
98	Model Flexifit : A conceptual rainfall runoff model for the extension of monthly runoff records.	P.J.T. ROBERTS (1979)	R 2,29
99	Pumping test analysis when the pumped well intercepts a vertical fracture.	B.H.T. GILDING (1979)	R 2,46
100	The toxicology of silver iodide in relation to its use as a cloud seeding agent.	P.L. KEMPSTER (1979)	R 1,10
101	Health implications of using bitumen, coal-tar, asbestos and plastic materials in water distribution systems.	P.L. KEMPSTER (1979)	R 1,78
102	Southern African storm rainfall	P.T. ADAMSON	R31,73
104	'n Identifikasiemetode vir die identifisering van dispersiewe gronde.	F.A. GERBER (1980) D.S. GROBLER	R 1,30
105	Maximum flood peak discharge in South Africa. Am empirical approach.	Z.P. KOVACS (1980)	R 2,90
106	Common algae found in South African impoundments.	S.N. SHILLINGLAW (1980)	R 2,80
107	Bacteriological quality of the river waters of the Roodeplaat Dam catchment.	D.P. SARTORY (1980)	R 1,76
108	Summarized water quality criteria.	P.L. KEMPSTER (1980) W.H.J. HATTINGH H.R. VAN VLIET	R 1,76
111	Energy aspects of water use efficiency.	P.C. McROBERT-REID	R14,50
113	Workshop on the effect of rural land- use and catchment management on water resources.	EDITED BY H. HAAREN JULY 1981	R 9,20
114	Water year + 10 and then?	EDITED BY W.H.J. HATTINGH (1981)	R 9,38

TR.NO.	TITEL/TITLE	OUTEUR(S)/AUTHOR(S)	PRYS/PRICE (AVB uitgesluit (GST excluded)
	Spectrophotometric analysis of chlorophyll a in freshwater phyto-plankton.	D.P. SARTORY (1982)	R 8,00
116	Documentation of the January 1981 floods in the South Western Cape.	Z.P. KOVACS (1983)	R22,63
117	Point and diffuse source phosphorus loading of rivers and impoundments in the Durban-Pietermaritzburg Region.	DALLAS ANNE KRÖGER (1981)	R10,15
118	The Bethlehem run-off augmentation research project: Past, present and future.	S. HASON-WILLIAMS (1984)	R23,86
	South African National Hydrological Symposium - Proceedings.	H. MAAREN (ED) (1984)	R90,09
120	Documentation of the March-May 1981 floods in the South Eastern Cape.	D.B. DU PLESSIS	R14,84
121	An Assessment of Water Related Problems of the Vaal River between Barrage and Douglas Weir.	C.A. BRUWER H.R. VAN VLIET D.P. SARTORY P.L. KEMPSTER	R14,84
122	Documentation of the 1984 Domoina Floods.	Z.P. KOVACS D.P. DU PLESSIS P.R. BRACHER P. DUNN G.G.L. MALLORY	R29,29
123	'n Evaluering van die fisies-chemiese eienskappe van dispersiewe grond en die metodes vir identifisering van dispersiewe grond.		R 9,57
124	A comparison of methods to determine nutrient limitation in impoundments.	L. ROSSOUW	R18,60
125	The estimation of phytoplankton biomass in freshwater.	S.G. YOUNG	R14,45
126	Manual for the planning, design and operation of river gauging stations.	J.J. VAN HEERDEN D. VAN DER SPUY P.J. LE ROUX	R 7,77
3	'n Ondersoek na die Rol van Soöplankton in Roodeplaatdam. (Nog nie gedruk – Not yet printed)	C.E. VAN GINKEL	
	Landsat water quality surveillance - development of the model CALMCAT	A.H. HOWMAN P.L. KEMPSTER	821,99
	Estuarine and lake freshwater requirements	W.A. JEZEWSKI DR. C.P. ROBERTS	R 5,60